The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites’ 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics.
A ferromagnetic (FM) thin film deposited on a substrate of Pb(Mg1/3Nb2/3)O3−PbTiO3 (PMN-PT) is an appealing heterostructure for the electrical control of magnetism, which would enable nonvolatile memories with ultralow-power consumption. Reversible and electrically controlled morphological changes at the surface of PMN-PT suggest that the magnetoelectric effects are more complex than the commonly used “strain-mediated” description. Here we show that changes in substrate morphology intervene in magnetoelectric coupling as a key parameter interplaying with strain. Magnetic-sensitive microscopy techniques are used to study magnetoelectric coupling in Fe/PMN-PT at different length scales, and compare different substrate cuts. The observed rotation of the magnetic anisotropy is connected to the changes in morphology, and mapped in the crack pattern at the mesoscopic scale. Ferroelectric polarization switching induces a magnetic field-free rotation of the magnetic domains at micrometer scale, with a wide distribution of rotation angles. Our results show that the relationship between the rotation of the magnetic easy axis and the rotation of the in-plane component of the electric polarization is not straightforward, as well as the relationship between ferroelectric domains and crack pattern. The understanding and control of this phenomenon is crucial to develop functional devices based on FM/PMN-PT heterostructures.
The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at high doping level up to x=0.4, thanks to the good lat-tice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at macroscopic and atomic level, respectively. Therefore, in epitaxial thin films the homogeneous doping can be obtained even with high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by x-ray photoemission and x-ray absorption show the O 2p band shift towards the Fermi level which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x=0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of high doping level x=0.4.
This thesis is focused the structural and spectroscopic characterization of multiferroic heterostructures composed of a thin film of iron, which is ferromagnetic, deposited on a bulk PMN-PT ([Pb(Mg1/3Nb2/3)O3]1−x–[PbTiO3]x) substrate, which is ferroelectric. The epitaxially grown interface between two mate-rials displays the magnetoelectric coupling. By applying an electric field across the thickness of the substrate (i.e. along the growth direction) it is possible to polarize and deform the ferroelectric crystal structure, thus manipulating the magnetic properties of the over-layer. In this work, we analyse how the two opposite polarized states of the PMN-PT affect the magnetic anisotropy of the iron overlayer and the role of morphology in this modifications. In particular the morphology represents an important factor in the magnetoelectric mechanisms that has been little investigated before.
The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n–x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.
Here, we present an integrated ultra-high vacuum apparatus—named MBE-Cluster —dedicated to the growth and in situ structural, spectroscopic, and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g., manganites, and deposition of the patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction, low-energy electron diffraction, Auger electron spectroscopy, x-ray photoemission spectroscopy, and azimuthal longitudinal magneto-optic Kerr effect. The temperature can be controlled in the range from 5 K to 580 K, with the possibility of application of magnetic fields H up to ±7 kOe and electric fields E for voltages up to ±500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator facility for time-resolved spectroscopy.
The electronic properties of strontium ruthenate SrRuO3perovskite oxide thin filmsare modified by epitaxial strain, as determined by growing on different substrates by pulsedlaser deposition. Temperature dependence of the transport properties indicates that tensilestrain deformation of the SrRuO3unit cell reduces the metallicity of the material as well as itsmetal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Rubuckling angle due to compressive strain is counterweighted by the increased overlap of theconduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting intoan increased MIT temperature, i.e., a more conducting material. In particular, in the more metallicsamples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of anextra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening,as observed in volume sensitive photoemission of the unstrained material.
In the framework of piezoelectric/ferromagnetic patterned heterostructures, the purpose of this work is to electrically control the magnetic properties by tuning the morphology, especially by modifying the magnetic shape anisotropy through patterned strain. We have thus designed and studied a heterostructure with bottom nano-striped and top full film electrodes. ZnO piezoelectric and CoFeB magnetic materials were chosen to respond at critical criteria of its geometry. In addition, numerical simulations and magnetostatic calculations were performed to understand the reproduction of the pattern across the multiferroic heterostructure. Calculations have shown that the geometry of the heterostructure presents strict constraints, as for instance the distance between stripes versus the piezoelectric thickness. This study is a preliminary step towards reversible patterning of magnetic properties.
Out-of-plane Ga2Se3 nanowires are grown by molecular beam epitaxy via Au-assisted heterovalent exchange reaction on GaAs substrates in the absence of Ga deposition. It is shown that at a suitable temperature around 560 degrees C the Audecorated GaAs substrate releases Ga atoms, which react with the incoming Se and feed the nanowire growth. The nanowire composition, crystal structure, and morphology are characterized by Raman spectroscopy and electron microscopy. The growth mechanism is investigated by X-ray photoelectron spectroscopy. We explore the growth parameter window and find an interesting effect of shortening of the nanowires after a certain maximum length. The nanowire growth is described within a diffusion transport model, which explains the nonmonotonic behavior of the nanowire length versus the growth parameters. Nanowire shortening is explained by the blocking of Ga supply from the GaAs substrate by thick, in-plane worm-like Ga2Se3 structures, which grow concomitantly with the nanowires, followed by backward diffusion of Ga atoms from the nanowires down to the substrate surface.
The electronic properties of anatase titanium dioxide (TiO2) thin films epitaxially grown on LaAlO3 substrates are investigated by synchrotron-x-ray spectroscopy [x-ray absorption spectroscopy (XAS), x-ray photoemission spectroscopy (XPS), and angle-resolved photoemission spectroscopy (ARPES)] and infrared spectroscopy. The Ti3+ fraction in TiO2−x is varied either by changing the oxygen pressure during deposition or by postgrowth annealing in ultrahigh vacuum (UHV). Structural investigation of the TiO2 thin films provides evidence of highly uniform crystallographic order in both as-grown and in situ UHV-annealed samples. The increased amount of Ti3+ as a consequence of UHV annealing is calibrated by in situ XPS and XAS analysis. The as-grown TiO2 samples, with a low Ti3+ concentration, show distinct electronic properties with respect to the annealed films, namely, absorption in the midinfrared (MIR) region correlated with polaron formation, and another peak in the visible range at 1.6 eV correlated with the presence of localized defect states (DSs). With the increasing level of Ti3+ induced by the postannealing process, the MIR peak disappears, while the DS peak is redshifted to the near-infrared region at about 1.0 eV. These results indicate the possibility of tailoring the optical absorption of anatase TiO2 films from the visible to the near-infrared region.
We present the results of a photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES) study on high quality, epitaxial SrNbO3 thin films prepared in situ by pulsed laser deposition (PLD). We show that the Fermi surface is composed of three bands mainly due to t(2g) orbitals of Nb 4d, in analogy with the 3d-based perovskite systems. The bulk band dispersion for the conduction and valence states obtained by density functional theory (DFT) is generally consistent with the ARPES data. The small discrepancy in the bandwidth close to the Fermi level seems to result from the interplay of correlation effects and the presence of vacancies. The ARPES results are complemented by soft x-ray photoemission spectroscopy measurements in order to provide indications on the chemical states and the stoichiometry of the material.
Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage.
The redox process of pretreated Co3O4 thin film coatings has been studied by ambient pressure soft X-ray absorption spectroscopy. The Co3O4 coatings were composed of nanoparticles of about 10 nm in size as prepared by pulsed laser deposition. The thin film coatings were pretreated in He or in H2 up to 150 °C prior to exposure to the reactive gases. The reactivity toward carbon monoxide and oxygen was monitored by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy during gas exposures. The results indicate that the samples pretreated in He show reactivity only at high temperature, while the samples pretreated in H2 are reactive also at room temperature. X-ray photoemission spectroscopy measurements in ultra-high vacuum and NEXAFS simulations with the CTM4XAS code further specify the results.
We combine time-resolved pump-probe magneto-optical Kerr effect and photoelectron spectroscopy experiments supported by theoretical analysis to determine the relaxation dynamics of delocalized electrons in half-metallic ferromagnetic manganite La1−xSrxMnO3. We observe that the half-metallic character of La1−xSrxMnO3 determines the timescale of both the electronic phase transition and the quenching of magnetization, revealing a quantum isolation of the spin system in double-exchange ferromagnets extending up to hundreds of picoseconds. We demonstrate the use of time-resolved hard x-ray photoelectron spectroscopy as a unique tool to single out the evolution of strongly correlated electronic states across a second-order phase transition in a complex material.
We report on the reproducible surface topological electron states in Bi2Se3 topological insulator thin films when epitaxially grown by Pulsed Laser Deposition (PLD) on (0 0 1)-oriented SrTiO3 (STO) perovskite substrates. Bi2Se3 has been reproducibly grown with single (0 0 1)-orientation and low surface roughness as controlled by ex-situ X-ray diffraction and in situ scanning tunnel microscopy and low-energy electron diffraction. Finally, in situ synchrotron radiation angle-resolved photo-emission spectroscopy measurements show a single Dirac cone and Dirac point at eV located in the center of the Brillouin zone likewise found from exfoliated single-crystals. These results demonstrate that the topological surface electron properties of PLD-grown Bi2Se3 thin films grown on (0 0 1)-oriented STO substrates open new perspectives for applications of multi-layered materials based on oxide perovskites.
Converse magnetoelectric coupling in artificial multiferroics is generally modeled through three possible mechanisms: charge transfer, strain mediated effects or ion migration. Here the role played by electrically controlled morphological modifications on the ferromagnetic response of a multiferroic heterostructure, specifically FexMn1−x ferromagnetic films on piezoferroelectric PMN‐PT [001] substrates, is discussed. The substrates present, in correspondence to electrical switching, fully reversible morphological changes at the surface, to which correspond reproducible modifications of the ferromagnetic response of the FexMn1−x films. Topographic analysis by atomic force microscopy shows the formation of surface cracks (up to 100 nm in height) upon application of a sufficiently high positive electric field (up to 6 kV cm−1). The cracks disappear after application of negative electric field of the same magnitude. Correspondingly, in operando X‐ray magnetic circular dichroic spectroscopy at Fe edge in FexMn1−x layers and micro‐MOKE measurements show local variations in the intensity of the dichroic signal and in the magnetic anisotropy as a function of the electrically driven morphological state. This morphologic parameter, rarely explored in literature, directly affects the ferromagnetic response of the system. Its proof of electrically reversible modification of the magnetic response adds a new possibility in the design of electrically controlled magnetic devices.
By performing density functional theory and Green's functions calculations, complemented by x-ray photoemission spectroscopy, we investigate the electronic structure of Fe/GeTe(111), a prototypical ferromagnetic/Rashba-ferroelectric interface. We reveal that such a system exhibits several intriguing properties resulting from the complex interplay of exchange interaction, electric polarization, and spin-orbit coupling. Despite a rather strong interfacial hybridization between Fe and GeTe bands, resulting in a complete suppression of the surface states of the latter, the bulk Rashba bands are hardly altered by the ferromagnetic overlayer. This could have a deep impact on spin-dependent phenomena observed at this interface, such as spin-to-charge interconversion, which are likely to involve bulk rather than surface Rashba states.
This thesis contains a selection of the results on the shallow electron states of quantum materials that I obtained as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano. I carried out my doctoral research activity mostly at the TASC-IOM CNR laboratory, in the framework of the NFFA and APE-beamline facilities (Elettra Sincrotrone Trieste), as well in dedicated sessions at the I2; beamline of the Diamond light source, Harwell Campus, UK. To access the electronic properties of materials I specialised myself in photoemission spectroscopy techniques. High quality samples are a prerequisite for any attempt to study quantum materials so that a major effort in my PhD project has been to master the growth of novel quantum materials by means of Pulsed Laser Deposition (PLD). Given that the PLD is integrated in the suite of UHV facilities attached in-situ to the APE beamline, I directly characterised the electronic properties of the PLD grown samples exploiting both the spectroscopic techniques available at the beamline (ARPES, X-ray photoemission and absorption spectroscopies: XPS and XAS), either ex-situ structural characterisation tools (X-ray diffraction –XRD– and X-ray reflectivity, XRR).
Titanium dioxide (TiO2) is mainly present in nature in three different polymorphs: rutile, brookite and anatase. In particular, the latter is largely studied due to its promising future applications in several devices like memristors and solar cells, as well as implementations in spintronics and transparent conductive oxides. In this framework, the most important physical quantity is certainly conductivity: it is thus fundamental to analyze and control the electronic properties of anatase with a particular attention to the surface, which plays a remarkable role in the previous applications.
Rutile TiO2 is thermodinamically favoured at the common ambient pressure and temperature, while anatase is favoured instead at the nanometric scale: for these reasons, thin films Pulsed Laser Deposition (PLD) enables a controlled and functionalized growth of anatase, thanks to the extreme versatility and accuracy of this technique.
This work was carried out at the NFFA (Nano Foundries and Fine Analysis) - APE (Advanced Photoelectric Effect) beamline, part of the CNR - IOM group, which exploits the synchrotron radiation emitted by the third generation storage ring Elettra. In particular, APE beamline is a state-of-the-art surface science laboratory, which includes a thin film pulsed laser deposition chamber connected through a multi-component ultra-high vacuum (UHV) system to two distinct endstations, where the electronic properties of the samples are analyzed with low energy (8 120 eV ) and high energy (150 1600 eV ) x-rays. It is thus possible to deposit thin films of the desired material and subsequently perform measurements with synchrotron light without exposing the sample to air, preventing an irreversible contamination of the surface.
In this work, I am going to present the main results of the scientific activity in which I was involved during my summer internship at CNR-IOM in Trieste (Italy) during the period, May 16, 2019 to August 10, 2019.
This report focuses on the magneto-optic Kerr effect (MOKE) investigations done on two set of samples.
The first set of samples regards the optimization of the deposition parameters of CoFeB, in order to obtain a sample with low coercive field and isotropic behavior. The aim is to obtain a soft isotropic ferromagnetic layer, for further implementation into ferroelectric/ferromagnetic heterostructures.
The second set regards a run of experiments with the aim of setting an exchange bias coupling by partially oxidizing the ferromagnetic layer through the substrate deoxidation. Here Fe (10 nm) ferromagnetic layer is deposited on substrate Lithium Niobate (LNZ).
Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of a system, it is fundamental to set a defined anisotropy to the system. Here, we investigate half-metallic La0.67Sr0.33MnO3 thin films by means of vectorial Magneto-Optical Kerr Magnetometry and found that they exhibit pure biaxial magnetic anisotropy at room temperature if grown onto a MgO (001) substrate with a thin SrTiO3 buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways and critical fields (coercivity and switching) discloses the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows fourfold symmetry at any temperature.
In order to enable the use of the prototypical 2D‐layered MoS2 for spintronics, its integration with ferromagnetic layers is mandatory. By employing interface‐sensitive 57Fe conversion electron Mössbauer spectroscopy (CEMS), hard X‐ray photoelectron spectroscopy (HAXPES), and transmission electron microscopy (TEM), the chemical, structural, and magnetic properties of the Fe/2D‐MoS2 interface are investigated. CEMS shows that out of the first 1 nm of Fe in direct contact with 2D‐MoS2, about half of the Fe atoms keeps the un‐perturbed Fe local environment, partly in regions where the original 2D‐layered structure of MoS2 is preserved as shown by TEM. The remaining reacting Fe atoms exclusively bond with Mo, with the majority of them being characterized by a ferromagnetic environment and the rest coordinating in a paramagnetic Fe‐Mo configuration. The preferential Fe bonding with Mo is corroborated by HAXPES analysis. The results provide detailed insight into the link between the bonding configuration and the interfacial magnetism at the Fe/2D‐MoS2 heterojunction.
Controlling magnetism by using electric fields is a goal of research towards novel spintronic devices and future nanoelectronics. For this reason, multiferroic heterostructures attract much interest. Here we provide experimental evidence, and supporting density functional theory analysis, of a transition in La0.65Sr0.35MnO3 thin film to a stable ferromagnetic phase, that is induced by the structural and strain properties of the ferroelectric BaTiO3 (BTO) substrate, which can be modified by applying external electric fields. X-ray magnetic circular dichroism measurements on Mn L edges with a synchrotron radiation show, in fact, two magnetic transitions as a function of temperature that correspond to structural changes of the BTO substrate. We also show that ferromagnetism, absent in the pristine condition at room temperature, can be established by electrically switching the BTO ferroelectric domains in the out-of-plane direction. The present results confirm that electrically induced strain can be exploited to control magnetism in multiferroic oxide heterostructures.
The superconducting properties of Sr1–xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1–xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1−xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1−xSrxMnO3, for fully restoring bulk properties.
We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.
We report on epitaxial growth of Bi2Se3topological insulator thin films by Pulsed Laser Deposition(PLD). X-ray diffraction investigation confirms that Bi2Se3with a single (001)-orientation can beobtained on several substrates in a narrow (i.e., 20°C) range of deposition temperatures and at highdeposition pressure (i.e., 0.1 mbar). However, only films grown on (001)-Al2O3substrates show analmost-unique in-plane orientation.In-situspin-resolved angular resolved photoemission spectros-copy experiments, performed at the NFFA-APE facility of IOM-CNR and Elettra (Trieste), show asingle Dirac cone with the Dirac point atEB0:38 eV located in the center of the Brillouin zoneand the spin polarization of the topological surface states. These results demonstrate that the topolog-ical surface state can be obtained in PLD-grown Bi2Se3thin films.
The role of trivalent rare-earth dopants on the cerium oxidation state has been systematically studied by in situ photoemission spectroscopy with synchrotron radiation for 10 mol % rare-earth doped epitaxial ceria films. It was found that dopant rare-earths with smaller ionic radius foster the formation of Ce3+ by releasing the stress strength induced by the cation substitution. With a decrease of the dopant ionic radius from La3+ to Yb3+, the out-of-plane axis parameter of the crystal lattice decreases without introducing macroscopic defects. The high crystal quality of our films allowed us to comparatively study both the ionic conductivity and surface reactivity ruling out the influence of structural defects. The measured increase in the activation energy of films and their enhanced surface reactivity can be explained in terms of the dopant ionic radius effects on the Ce4+ → Ce3+ reduction as a result of lattice relaxation. Such findings open new perspectives in designing ceria-based materials with tailored properties by choosing suitable cation substitution.
Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the “bulk” ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange “surface” reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.
One of the most fascinating challenges in modern solid state physics, both from a theoretical and an experimental point of view, is the comprehension of electron correlation and how it can aect the macroscopic properties of materials. Eects of electron correlation are extremely important in materials with open d and f electron shells, where electrons are conned in narrow orbitals and the interaction between the electrons internal degrees of freedom are enhanced. In fact these systems are known to display some of the most intriguing phenomena in condensed matter physics, such as:
The possibility to exploit these properties to realise devices has driven many theoretical and experimental eorts directed to understand how to describe these phenomena and how to control them by manipulating external parameters such as temperature, doping, etc.
The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.
Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.