NFFA Experts

Technique

From our users

Phys. Rev. B, 106, 035156, (2022)

Microscopic origin of magnetism in monolayer 3d transition metal dihalides

K. Riedl, D. Amoroso, S. Backes, A. Razpopov, T.P.T. Nguyen, K. Yamauchi, P. Barone, S.M. Winter, S. Picozzi, and R. Valentí

Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials MX2 (M=V, Mn, Ni and X=Cl, Br, I). We first show that consideration of general properties such as filling and hybridization enables to formulate the trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3d transition metal ions do not strongly contribute to the anisotropic component of the intersite exchange interaction. Consequently, we find that the corresponding SOC matrix elements differ significantly from the atomic limit. In the next step and by using two ab initio based complementary approaches, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.

Our Research

J. Appl. Phys., 131, 215703, (2022)

Toward machine learning for microscopic mechanisms: A formula search for crystal structure stability based on atomic properties

U. Gajera, L. Storchi, D. Amoroso, F. Delodovici and S. Picozzi

Machine-learning techniques are revolutionizing the way to perform efficient materials modeling. We here propose a combinatorial machine-learning approach to obtain physical formulas based on simple and easily accessible ingredients, such as atomic properties. The latter are used to build materials features that are finally employed, through linear regression, to predict the energetic stability of semiconducting binary compounds with respect to zinc blende and rocksalt crystal structures. The adopted models are trained using a dataset built from first-principles calculations. Our results show that already one-dimensional (1D) formulas well describe the energetics; a simple grid-search optimization of the automatically obtained 1D-formulas enhances the prediction performance at a very small computational cost. In addition, our approach allows one to highlight the role of the different atomic properties involved in the formulas. The computed formulas clearly indicate that “spatial” atomic properties (i.e., radii indicating maximum probability densities for 𝑠,𝑝,𝑑 electronic shells) drive the stabilization of one crystal structure with respect to the other, suggesting the major relevance of the radius associated with the 𝑝-shell of the cation species.

From our users

Phys. Rev. Lett., 128 (17), 177202, (2022)

Curved Magnetism in CrI3

A. Edstrom, D. Amoroso, S. Picozzi, P. Barone, M. Stengel

Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models

From our users

Nature, 602, 601–605, (2022)

Evidence for a single-layer van der Waals multiferroic

Q. Song, C.A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P. Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A.S. Botana, S. Picozzi, N. Gedik & R. Comin

Multiferroic materials have attracted wide interest because of their exceptional static1,2,3 and dynamical4,5,6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.

From our users

Phys. Rev. Lett., 127, 247204, (2021)

Giant Biquadratic Exchange in 2D Magnets and Its Role in Stabilizing Ferromagnetism of NiCl2 Monolayers

J.Y. Ni, X.Y. Li, D. Amoroso, X. He, J.S. Feng, E.J. Kan, S. Picozzi, and H.J. Xiang

Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX2 (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl2 single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.

From our users

Phys. Rev. Materials, 5, 104403, (2021)

Identification of hidden orbital contributions in the La0.65Sr0.35MnO3 valence band

F. Offi, K. Yamauchi, S. Picozzi, V. Lollobrigida, A. Verna, C. Schlueter, T.-L. Lee, A. Regoutz, D. J. Payne, A. Petrov, G. Vinai, G. M. Pierantozzi, T. Pincelli, G. Panaccione, and F. Borgatti

Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.

Our Research

Nanomaterials, 11, 1873, (2021)

Interplay between single-ion and two-ion anisotropies in frustrated 2d semiconductors and tuning of magnetic structures topology

D. Amoroso, P. Barone, S. Picozzi

The effects of competing magnetic interactions in stabilizing different spin configurations are drawing renewed attention in order to unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilization. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work, we explore the phase diagram of a frustrated localized magnet characterized by a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy and the single-ion anisotropy. The effects of an external magnetic field applied perpendicularly to the magnetic layer, are also investigated. By means of Monte Carlo simulations, we find an abundance of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture; the strength and the sign of single ion anisotropy, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin texture. Our analysis confirms the crucial role of the anisotropic symmetric exchange in systems with dominant short-range interactions; at the same time, we predict a rich variety of complex magnetic textures, which may arise from a fine tuning of competing anisotropic mechanisms.

From our users

Phys. Rev. B, 104, 014414, (2021)

Electric-field tuning of the magnetic properties of bilayer VI3: A first-principles study

T.P.T. Nguyen, K. Yamauchi, T. Oguchi, D. Amoroso, and S. Picozzi

The magnetic properties of the two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of t2g orbital splitting and carried out in comparison with the CrI3 prototypical case, where the splitting is negligible. In VI3 bilayers, the empty a1g state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different VI3 stackings (labeled AB and AB′), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the AB′ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.

Our Research

Chem. Rev., 121, 5, 2816–2856, (2021)

Angle, Spin, and Depth Resolved Photoelectron Spectroscopy on Quantum Materials

P.D.C. King, S. Picozzi, R.G. Egdell, G. Panaccione

The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal “hidden” spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.

Our Research

Nat. Commun., 11, 5784, (2020)

Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer

D. Amoroso, P. Barone, S. Picozzi

Topological spin structures, such as magnetic skyrmions, hold great promises for data storage applications, thanks to their inherent stability. In most cases, skyrmions are stabilized by magnetic fields in non-centrosymmetric systems displaying the chiral Dzyaloshinskii-Moriya exchange interaction, while spontaneous skyrmion lattices have been reported in centrosymmetric itinerant magnets with long-range interactions. Here, a spontaneous anti-biskyrmion lattice with unique topology and chirality is predicted in the monolayer of a semiconducting and centrosymmetric metal halide, NiI2. Our first-principles and Monte Carlo simulations reveal that the anisotropies of the short-range symmetric exchange, when combined with magnetic frustration, can lead to an emergent chiral interaction that is responsible for the predicted topological spin structures. The proposed mechanism finds a prototypical manifestation in two-dimensional magnets, thus broadening the class of materials that can host spontaneous skyrmionic states. Skyrmions, topological spin textures, are typically stabilized by the Dzyaloshinskii-Moriya interaction and an applied magnetic field. In this theoretical study, by analysing monolayer NiI2, the authors suggest that two-site anisotropy with magnetic frustration can stabilize a skyrmion lattice.

Our Research

Phys. Rev. Materials, 4, 025006, (2020)

Direct insight into the band structure of SrNbO3

C. Bigi, P. Orgiani, J. Slawinska, J. Fujii, J.T. Irvine, S. Picozzi, G. Panaccione, I. Vobornik, G. Rossi, D. Payne, and F. Borgatti

We present the results of a photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES) study on high quality, epitaxial SrNbO3 thin films prepared in situ by pulsed laser deposition (PLD). We show that the Fermi surface is composed of three bands mainly due to t(2g) orbitals of Nb 4d, in analogy with the 3d-based perovskite systems. The bulk band dispersion for the conduction and valence states obtained by density functional theory (DFT) is generally consistent with the ARPES data. The small discrepancy in the bandwidth close to the Fermi level seems to result from the interplay of correlation effects and the presence of vacancies. The ARPES results are complemented by soft x-ray photoemission spectroscopy measurements in order to provide indications on the chemical states and the stoichiometry of the material.

From our users

Phys. Rev. B, 100, 174423, (2019)

Detecting antiferromagnetism in tetragonal Cr2O3 by electrical measurements

M. Asa, C. Autieri, C. Barone, C. Mauro, S. Picozzi, S. Pagano, and M. Cantoni

The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.

Our Research

Phys. Rev. B, 99, 214427, (2019)

Possible emergence of a skyrmion phase in ferroelectric GaMo4S8

H. Zhang, J. Chen, P. Barone, K. Yamauchi, S. Dong, and S. Picozzi

Polar lacunar spinels, such as GaV4S8 and GaV4Se8, were proposed to host skyrmion phases under magnetic field. In this work, we put forward, as a candidate for Néel-type skyrmion lattice, the isostructural GaMo4S8, which is systematically studied via both first-principles calculations and Monte Carlo simulations of a model Hamiltonian. Electric polarization, driven by the Jahn-Teller distortion, is predicted to arise in GaMo4S8, showing a comparable size but an opposite sign with respect to that evaluated in V-based counterparts and explained in terms of different electron counting arguments and resulting distortions. Interestingly, a larger spin-orbit coupling of 4d orbitals with respect to 3d orbitals in vanadium spinels leads to stronger Dzyaloshinskii-Moriya interactions, which are beneficial to stabilize a cycloidal spin texture, as well as smaller-sized skyrmions (radius<10nm). Furthermore, the possibly large exchange anisotropy of GaMo4S8 may lead to a ferroelectric-ferromagnetic ground state as an alternative to the ferroelectric-skyrmionic one, thus calling for further experimental verification.

Our Research

Electron. Struct., 1, 014003, (2019)

Electronic properties of candidate type-II Weyl semimetal WTe2. A review perspective

P.K. Das, D. Di Sante, F. Cilento, C. Bigi, D. Kopic, D. Soranzio, A. Sterzi, J.A. Krieger, I. Vobornik, J. Fujii, T. Okuda, V.N. Strocov, M.B.H. Breese, F. Parmigiani, G. Rossi, S. Picozzi, R. Thomale, G. Sangiovanni, R.J. Cava, and G. Panaccione

Currently, there is a flurry of research interest on materials with an unconventional electronic structure, and we have already seen significant progress in their understanding and engineering towards real-life applications. The interest erupted with the discovery of graphene and topological insulators in the previous decade. The electrons in graphene simulate massless Dirac Fermions with a linearly dispersing Dirac cone in their band structure, while in topological insulators, the electronic bands wind non-trivially in momentum space giving rise to gapless surface states and bulk bandgap. Weyl semimetals in condensed matter systems are the latest addition to this growing family of topological materials. Weyl Fermions are known in the context of high energy physics since almost the beginning of quantum mechanics. They apparently violate charge conservation rules, displaying the 'chiral anomaly', with such remarkable properties recently theoretically predicted and experimentally verified to exist as low energy quasiparticle states in certain condensed matter systems. Not only are these new materials extremely important for our fundamental understanding of quantum phenomena, but also they exhibit completely different transport phenomena. For example, massless Fermions are susceptible to scattering from non-magnetic impurities. Dirac semimetals exhibit non-saturating extremely large magnetoresistance as a consequence of their robust electronic bands being protected by time reversal symmetry. These open up whole new possibilities for materials engineering and applications including quantum computing. In this review, we recapitulate some of the outstanding properties of WTe2, namely, its non-saturating titanic magnetoresistance due to perfect electron and hole carrier balance up to a very high magnetic field observed for the very first time. It also indicative of hosting Lorentz violating type-II Weyl Fermions in its bandstructure, again first predicted candidate material to host such a remarkable phase. We primarily focus on the findings of our ARPES, spin-ARPES, and time-resolved ARPES studies complemented by first-principles calculations.

Our Research

Phys. Rev. B, 99, 075306, (2019)

Fe/GeTe(111) heterostructures as an avenue towards spintronics based on ferroelectric Rashba semiconductors

J. Sławińska, D. Di Sante, S. Varotto, C. Rinaldi, R. Bertacco, and S. Picozzi

By performing density functional theory and Green's functions calculations, complemented by x-ray photoemission spectroscopy, we investigate the electronic structure of Fe/GeTe(111), a prototypical ferromagnetic/Rashba-ferroelectric interface. We reveal that such a system exhibits several intriguing properties resulting from the complex interplay of exchange interaction, electric polarization, and spin-orbit coupling. Despite a rather strong interfacial hybridization between Fe and GeTe bands, resulting in a complete suppression of the surface states of the latter, the bulk Rashba bands are hardly altered by the ferromagnetic overlayer. This could have a deep impact on spin-dependent phenomena observed at this interface, such as spin-to-charge interconversion, which are likely to involve bulk rather than surface Rashba states.

Our Research

Phys. Rev. Materials, 2(6), 065001, (2018)

Role of Spin-Orbit Coupling in the Electronic Structure of IrO2

P. K. Das, J. Sławińska, I. Vobornik, J. Fujii, A. Regoutz, J.M. Kahk, D.O. Scanlon, B.J. Morgan, C. McGuinness, E. Plekhanov, D. Di Sante, Y.-S. Huang, R.-S. Chen, G. Rossi, S. Picozzi, W.R. Branford, G. Panaccione, and D.J. Payne

The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate,

IrO2, is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of IrO2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.

From our users

Phys. Rev. Materials, 2, 033401, (2018)

Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTiO3

M. Asa, G. Vinai, J.L. Hart, C. Autieri, C. Rinaldi, P. Torelli, G. Panaccione, M.L. Taheri, S. Picozzi, and M. Cantoni

Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/

BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the

BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.

Our Research

Phys. Rev. Lett., 119, 026403, (2017)

Three-Dimensional Electronic Structure of the Type-II Weyl Semimetal WTe 2

D. Di Sante, P. Kumar Das, C. Bigi, Z. Ergönenc, N. Gürtler, J. A. Krieger, T. Schmitt, M.N. Ali, G. Rossi, R. Thomale, C. Franchini, S. Picozzi, J. Fujii, V.N. Strocov, G. Sangiovanni, I. Vobornik, R.J. Cava, and G. Panaccione

By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe2, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe2 around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.

Our Research

Phys. Rev. B, 94, 241114, (2016)

Hidden spin polarization in nonmagnetic centrosymmetric BaNiS2 crystal: Signatures from first principles

J. Sławinska, A. Narayan and S. Picozzi

The recent discovery of hidden spin polarization emerging in bulk electronic states of specific nonmagnetic crystals is a fascinating phenomenon, though hardly explored yet. Here, we study from a theoretical perspective nonmagnetic

BaNiS2, recently suggested to exhibit a giant Rashba-like spin-orbit splitting of the bulk bands, despite the absence of heavy elements. We employ density functional theory and Green's functions calculations to reveal the exact spin textures of both bulk and surface. We predict unambiguous signatures of spin-polarized electronic states at the surface, which reflect the bulk Rashba splitting and which could be experimentally measured with sufficient resolution: this would constitute a clear report of a bulk-Rashba-induced spin splitting at the surface of centrosymmetric crystals.

Our Research

Nat. Commun., 7, 10847, (2016)

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2

P. K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B.E. Feldman, J. Tao, R. Ciancio, G. Rossi, M.N. Ali, S. Picozzi, A. Yadzani, G. Panaccione and R.J. Cava

The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.

You're being redirected, please wait few moments...

You're already authenticated