Disentangling Structural and Electronic Properties in V2O3 Thin Films: A Genuine Nonsymmetry Breaking Mott Transition
F. Mazzola, S.K. Chaluvadi, V. Polewczyk, D. Mondal, J. Fujii, P. Rajak, M. Islam, R. Ciancio, L. Barba, M. Fabrizio, G. Rossi, P. Orgiani, and I. Vobornik
Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal–insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal–insulator transition by implementing V2O3 thin films in devices.
Our Research
Adv. Electron. Mater., 2101338, (2022)
Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopy
P. Di Pietro, C. Bigi, S.K. Chaluvadi, D. Knez, P. Rajak, R. Ciancio, J. Fujii, F. Mercuri, S. Lupi, G. Rossi, F. Borgatti, A. Perucchi, P. Orgiani
The occurrence of oxygen-driven metal–insulator-transition (MIT) in SrNbO3 (SNO) thin films epitaxially grown on (110)-oriented DyScO3 has been reported. SNO films are fabricated by the pulsed laser deposition technique at different partial O2 pressure to vary the oxygen content and their structural, optical, and transport properties are probed. SNO unit cell has been found to shrink vertically as the oxygen content increases but keeping the epitaxial matching with the substrate. The results of Fourier-transform infra-red spectroscopy show that highly oxygenated SNO samples (i.e., grown at high oxygen pressure) show distinct optical conductivity behavior with respect to oxygen deficient films, hence demonstrating the insulating character of the formers with respect to those fabricated with lower pressure conditions. Tailoring the optical absorption and conductivity of strontium niobate epitaxial films across the MIT will favor novel applications of this material.
Our Research
Appl. Sci., 12(3), 1489, (2022)
HAADF STEM and Ab Initio Calculations Investigation of Anatase TiO2/LaAlO3 Heterointerface
M. Islam, P. Rajak, D. Knez, S.K. Chaluvadi, P. Orgiani, G. Rossi, G. Dražić, R. Ciancio
The understanding of the origin of a two-dimensional electron gas (2DEG) at the surface of anatase TiO2 remains a challenging issue. In particular, in TiO2 ultra-thin films, it is extremely difficult to distinguish intrinsic effects, due to the physics of the TiO2, from extrinsic effects, such as those arising from structural defects, dislocations, and the presence of competing phases at the film/substrate interface. It is, therefore, mandatory to unambiguously ascertain the structure of the TiO2/substrate interface. In this work, by combining high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), density functional theory calculations, and multislice image simulations, we have investigated the nature of strainless anatase TiO2 thin films grown on LaAlO3 substrate. In particular, the presence of oxygen vacancies in anatase TiO2 has been proved to stabilize the formation of an extra alloy layer, Ti2AlO4, by means of interface rearrangement. Our results, therefore, elucidate why the growth of anatase TiO2 directly on LaAlO3 substrate has required the deposition of a TiOx extra-layer to have a 2DEG established, thus confirming the absence of a critical thickness for the TiO2 to stabilize a 2DEG at its surface. These findings provide fundamental insights on the underlying formation mechanism of the 2DEG in TiO2/LAO hetero-interfaces to engineer the 2DEG formation in anatase TiO2 for tailored applications.
Our Research
ACS Appl. Mater. Interfaces, (2021)
Evidence of Mn-Ion Structural Displacements Correlated with Oxygen Vacancies in La0.7Sr0.3MnO3 Interfacial Dead Layers
P. Rajak, D. Knez, S.K. Chaluvadi, P. Orgiani, G. Rossi, L. Méchin, and R. Ciancio
The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.
Our Research
J. Phys. Mater., 4, 032001, (2021)
Pulsed laser deposition of oxide and metallic thin films by means of Nd:YAG laser source operating at its 1st harmonics: recent approaches and advances
S.K. Chaluvadi, D. Mondal, C. Bigi, D. Knez, P. Rajak, R. Ciancio, J. Fujii, G. Panaccione, I. Vobornik, G. Rossi, P. Orgiani
Quantum materials are central for the development of novel functional systems that are often based on interface specific phenomena. Fabricating controlled interfaces between quantum materials requires adopting a flexible growth technique capable to synthesize different materials within a single-run deposition process with high control of structure, stoichiometry, and termination. Among the various available thin film growth technologies, pulsed laser deposition (PLD) allows controlling the growth of diverse materials at the level of single atomic layers. In PLD the atomic species are supplied through an ablation process of a stoichiometric target either in form of polycrystalline powders or of a single crystal. No carrier gases are needed in the deposition process. The ablation process is compatible with a wide range of background pressure. We present results of thin-film growth by PLD obtained by using an Nd:YAG infrared pulsed laser source operating at its first harmonics. With respect to the traditional PLD systems—based on excimer KrF UV-lasers—optimal conditions for the growth of thin films and heterostructures are reached at large target-to-substrate distance. Merits and limitations of this approach for growing oxide and non-oxide thin films are discussed. The merits of an Nd:YAG laser to grow very high-quality thin films suggest the possibility of implementing compact in-situ setups e.g. integrated with analytical instrumentation under ultra-high vacuum conditions.
Login
You're being redirected, please wait few moments...