Kagome materials have emerged as a setting for emergent electronic phenomena that encompass different aspects of symmetry and topology. It is debated whether the XV6Sn6 kagome family (where X is a rare-earth element), a recently discovered family of bilayer kagome metals, hosts a topologically non-trivial ground state resulting from the opening of spin–orbit coupling gaps. These states would carry a finite spin Berry curvature, and topological surface states. Here we investigate the spin and electronic structure of the XV6Sn6 kagome family. We obtain evidence for a finite spin Berry curvature contribution at the centre of the Brillouin zone, where the nearly flat band detaches from the dispersing Dirac band because of spin–orbit coupling. In addition, the spin Berry curvature is further investigated in the charge density wave regime of ScV6Sn6 and it is found to be robust against the onset of the temperature-driven ordered phase. Utilizing the sensitivity of angle-resolved photoemission spectroscopy to the spin and orbital angular momentum, our work unveils the spin Berry curvature of topological kagome metals and helps to define its spectroscopic fingerprint.
In the search of low cost and more efficient electronic devices, here the properties of SrVO3 transparent conductor oxide (TCO) thin film are investigated, both visible-range optically transparent and highly conductive, it stands as a promising candidate to substitute the standard indium-tin-oxide (ITO) in applications. Its surface stability under water (both liquid and vapor) and other gaseous atmospheres is especially addressed. Through the use of spectroscopy characterizations, X-ray photoemission and operando X-ray absorption measurements, the formation of a thin Sr-rich V5+ layer located at the surface of the polycrystalline SrVO3 film with aging is observed, and for the first time how it can be removed from the surface by solvating in water atmosphere. The surface recovery is associated to an etching process, here spectroscopically characterized in operando conditions, allowing to follow the stoichiometric modification under reaction. Once exposed in oxygen atmosphere, the Sr-rich V5+ layer forms again. The findings improve the understanding of aging effects in perovskite oxides, allowing for the development of functionalized films in which it is possible to control or to avoid an insulating surface layer. This constitutes an important step towards the large-scale use of V-based TCOs, with possible implementations in oxide-based electronics.
VO2 is one of the most studied vanadium oxides because it undergoes a reversible metal-insulator transition (MIT) upon heating with a critical temperature of around 340 K. One of the most overlooked aspects of VO2 is the band’s anisotropy in the metallic phase when the Fermi level is crossed by two bands: π* and d||. They are oriented perpendicularly in one respect to the other, hence generating anisotropy. One of the parameters tuning MIT properties is the unbalance of the electron population of π* and d|| bands that arise from their different energy position with respect to the Fermi level. In systems with reduced dimensionality, the electron population disproportion is different with respect to the bulk leading to a different anisotropy. Investigating such a system with a band-selective spectroscopic tool is mandatory. In this manuscript, we show the results of the investigation of a single crystalline 8 nm VO2/TiO2(101) film. We report on the effectiveness of linearly polarized resonant photoemission (ResPES) as a band-selective technique probing the intrinsic anisotropy of VO2.
V2O3 presents a complex interrelationship between the metal–insulator transition and the structural rhombohedral-monoclinic one in temperature, as a function of sample thickness. Whilst in bulk V2O3 the two transitions coincide on the temperature scale, at 15 nm thickness a fully independent Mott-like transition occurs at lower temperature, with no corresponding structural changes perhaps related to epitaxial strain. It is therefore of relevance to investigate the thin and ultrathin film growth to pinpoint the chemical, electronic and structural phase phenomenology and the role of the interface with the substrate. Here we present results on the thickness dependent properties of V2O3 from 1 nm up to 40 nm thick as grown on c-plane Al2O3 substrates by exploiting variable sampling depth probes. The surface morphology of stoichiometric ultra-thin V2O3 layers evolves from islands-like to continuous flat film with thickness, with implications on the overall properties.
The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O3-0.4PbTiO3 (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.
The generation and control of surface acoustic waves (SAWs) in a magnetic material are objects of an intense research effort focused on magnetoelastic properties, with fruitful ramifications in spin-wave-based quantum logic and magnonics. We implement a transient grating setup to optically generate SAWs also seeding coherent spin waves via magnetoelastic coupling in ferromagnetic media. In this work we report on SAW-driven ferromagnetic resonance (FMR) experiments performed on polycrystalline Ni thin films in combination with time-resolved Faraday polarimetry, which allows extraction of the value of the effective magnetization and of the Gilbert damping. The results are in full agreement with measurements on the very same samples from standard FMR. Higher-order effects due to parametric modulation of the magnetization dynamics, such as down-conversion, up-conversion, and frequency mixing, are observed, testifying the high sensitivity of this technique.
Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal–insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal–insulator transition by implementing V2O3 thin films in devices.
The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1–xSrxMnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.
We report the integration of high-quality epitaxial La2/3Sr1/3MnO3 (LSMO) thin films onto SrTiO3 buffered Silicon-on-Sapphire (SOS) substrates by combining state-of-the-art thin film growth techniques such as molecular beam epitaxy and pulsed laser deposition. Detailed structural, magnetic and electrical characterizations of the LSMO/STO/SOS heterostructures show that the LSMO film properties are competitive with those directly grown on oxide substrates. X-ray magnetic circular dichroism measurements on Mn L2,3 edges show strong dichroic signal at room temperature, and angular-dependent in-plane magnetic properties by magneto-optical Kerr magnetometry reveal isotropic magnetic anisotropy. Suspended micro-bridges were thus finally fabricated by silicon micromachining, thus demonstrating the potential use of integrating LSMO magnetic layer on industrially compatible SOS substrates for the development of applicative MEMS devices.
Single crystals of the hexagonal triangular lattice compound AgCrSe2 have been grown by chemical vapor transport. The crystals have been carefully characterized and studied by magnetic susceptibility, magnetization, specific heat, and thermal expansion. In addition, we used Cr-electron spin resonance and neutron diffraction to probe the Cr 3d3 magnetism microscopically. To obtain the electronic density of states, we employed x-ray absorption and resonant photoemission spectroscopy in combination with density functional theory calculations. Our studies evidence an anisotropic magnetic order below TN=32K. Susceptibility data in small fields of about 1 T reveal an antiferromagnetic (AFM) type of order for H⊥c, whereas for H∥c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H⊥c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+=5T, which is absent for H∥c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fanlike arrangement above H+. A fully ferromagnetically polarized state is obtained above the saturation field of H⊥S=23.7T at 2 K with a magnetization of Ms=2.8μB/Cr. For H∥c, M(H) monotonically increases and saturates at the same Ms value at H∥S=25.1T at 4.2 K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T∗=45K, which is a clear fingerprint of short range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possibly related to the noncentrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen-based delafossites, can be tuned by relatively small, experimentally accessible magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode.
Composite multiferroics containing ferroelectric and ferromagnetic components often have much larger magnetoelectric coupling compared to their single-phase counterparts. Doped or alloyed HfO2-based ferroelectrics may serve as a promising component in composite multiferroic structures potentially feasible for technological applications. Recently, a strong charge-mediated magnetoelectric coupling at the Ni/HfO2 interface has been predicted using density functional theory calculations. Here, we report on the experimental evidence of such magnetoelectric coupling at the Ni/Hf0.5Zr0.5O2(HZO) interface. Using a combination of operando XAS/XMCD and HAXPES/MCDAD techniques, we probe element-selectively the local magnetic properties at the Ni/HZO interface in functional Au/Co/Ni/HZO/W capacitors and demonstrate clear evidence of the ferroelectric polarization effect on the magnetic response of a nanometer-thick Ni marker layer. The observed magnetoelectric effect and the electronic band lineup of the Ni/HZO interface are interpreted based on the results of our theoretical modeling. It elucidates the critical role of an ultrathin NiO interlayer, which controls the sign of the magnetoelectric effect as well as provides a realistic band offset at the Ni/HZO interface, in agreement with the experiment. Our results hold promise for the use of ferroelectric HfO2-based composite multiferroics for the design of multifunctional devices compatible with modern semiconductor technology.
We investigated the relationship between ferromagnetism and metallicity in strained La0.67Ca0.33MnO3 films grown on lattice-mismatched NdGaO3 (001) by means of spectroscopic techniques directly sensitive to the ferromagnetic state, to the band structure, and to the chemical state of the atoms. In this system, the ferromagnetic metallic (FMM) phase spatially coexists with an insulating one in most of the phase diagram. First, the observation of an almost 100% spin polarization of the photoelectrons at the Fermi level in the fundamental state provides direct evidence of the half-metallicity of the FMM phase, a result that has been previously observed through direct probing of the valence band only on unstrained, phase-homogeneous La0.67Sr0.33MnO3. Second, the spin polarization results to be correlated with the occupancy at the Fermi level for all the investigated temperature regimes. These outcomes show that the half-metallic behavior predicted by a double-exchange model persists even in phase-separated manganites. Moreover, the correlation between metallicity and ferromagnetic alignment is confirmed by X-ray magnetic circular dichroism, a more bulk-sensitive technique, allowing one to explain transport properties in terms of the conduction through aligned FMM domains.
Chirality and magnetism of molecules are two properties that in the last years raised notable interest for the development of novel molecular devices. Chiral helicenes combine these functionalities, and their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel assembling strategy to deposit a sub‐monolayer of enantiopure thia[4]helicene radical cations on a pre‐functionalized Au(111) substrate permitting the persistence of both the paramagnetic character and chirality of these molecules at the nanoscale. In‐house characterizations demonstrated the retention of the chemical and paramagnetic properties after the deposition process. Furthermore, synchrotron‐based X‐ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.
In this work, we investigate the effects of the V2O3 structural phase transition on the magnetic properties of an amorphous magnetic thin film of CoFeB in contact with it. V2O3 thin films are deposited epitaxially on sapphire substrates, reaching bulklike properties after few nm of growth. By means of temperature dependent Kerr effect characterizations, we prove that crossing the V2O3 structural phase transition induces reproducible and reversible changes to CoFeB magnetic properties, especially to its coercive field. By decreasing the oxide layer thickness, its effects on the magnetic layer decreases, while reducing the magnetic layer thickness maximizes it, with a maximum of 330% coercive field variation found between the two V2O3 structural phases. By simply tuning the temperature, this systematic study shows that the engineering of V2O3 structural transition induces large interfacial strain and thus strong magnetic property variations to an amorphous thin film, opening wide possibilities in implementing strain-driven control of the magnetic behavior without strict requirements on epitaxial coherence at the interface.
In this work, we present an investigation on the effects of thermal annealing on the magnetic response of Lithium Niobate/Fe samples. Fe thin films have been deposited on Lithium Niobate Z-cut ferroelectric substrates by vapor phase epitaxy. A series of annealing treatments were performed on the samples, monitoring the evolution of their magnetic properties, both at the surface and on the volume. The combination of structural, magnetic, chemical and morphological characterizations shows that the modification of the chemical properties, i.e. the phase decomposition, of the substrate upon annealing affects drastically the magnetic behavior of the interfacial Fe layer. By tuning the annealing temperature, the magnetic coercive field value can be increased by an order of magnitude compared to the as-grown value, keeping the same in-plane isotropic behavior. Since no evident differences were recorded in the Fe layer from the chemical point of view, we attribute the origin of this effect to an intermixing process between a fragment of the substrate and the Fe thin film upon critical temperature annealing, process that is also is responsible for the observed changes in roughness and morphology of the magnetic thin film.
A ferromagnetic (FM) thin film deposited on a substrate of Pb(Mg1/3Nb2/3)O3−PbTiO3 (PMN-PT) is an appealing heterostructure for the electrical control of magnetism, which would enable nonvolatile memories with ultralow-power consumption. Reversible and electrically controlled morphological changes at the surface of PMN-PT suggest that the magnetoelectric effects are more complex than the commonly used “strain-mediated” description. Here we show that changes in substrate morphology intervene in magnetoelectric coupling as a key parameter interplaying with strain. Magnetic-sensitive microscopy techniques are used to study magnetoelectric coupling in Fe/PMN-PT at different length scales, and compare different substrate cuts. The observed rotation of the magnetic anisotropy is connected to the changes in morphology, and mapped in the crack pattern at the mesoscopic scale. Ferroelectric polarization switching induces a magnetic field-free rotation of the magnetic domains at micrometer scale, with a wide distribution of rotation angles. Our results show that the relationship between the rotation of the magnetic easy axis and the rotation of the in-plane component of the electric polarization is not straightforward, as well as the relationship between ferroelectric domains and crack pattern. The understanding and control of this phenomenon is crucial to develop functional devices based on FM/PMN-PT heterostructures.
Here, we present an integrated ultra-high vacuum apparatus—named MBE-Cluster —dedicated to the growth and in situ structural, spectroscopic, and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g., manganites, and deposition of the patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction, low-energy electron diffraction, Auger electron spectroscopy, x-ray photoemission spectroscopy, and azimuthal longitudinal magneto-optic Kerr effect. The temperature can be controlled in the range from 5 K to 580 K, with the possibility of application of magnetic fields H up to ±7 kOe and electric fields E for voltages up to ±500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator facility for time-resolved spectroscopy.
In the framework of piezoelectric/ferromagnetic patterned heterostructures, the purpose of this work is to electrically control the magnetic properties by tuning the morphology, especially by modifying the magnetic shape anisotropy through patterned strain. We have thus designed and studied a heterostructure with bottom nano-striped and top full film electrodes. ZnO piezoelectric and CoFeB magnetic materials were chosen to respond at critical criteria of its geometry. In addition, numerical simulations and magnetostatic calculations were performed to understand the reproduction of the pattern across the multiferroic heterostructure. Calculations have shown that the geometry of the heterostructure presents strict constraints, as for instance the distance between stripes versus the piezoelectric thickness. This study is a preliminary step towards reversible patterning of magnetic properties.