Hydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution transmission electron microscopy. We discovered that the catalytic reaction is driven by surface tin-oxide phases, which protects the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide–water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
This work presents an original approach to preparing pure and Ni-doped CeO2 nanoparticles (NPs) that can be directly drop-casted on a substrate or calcined to form powders. The reduction of the NPs in H2 is very different than the one usually anticipated for supported Ni–CeO2 catalysts. In situ soft X-ray absorption and infrared spectroscopies revealed that the reduction of Ce4+ into Ce3+ in H2 proceeds via simultaneous oxidation of Ni2+ ions into Niδ+ (2<δ<3). Comparison with reference samples indicates that Ce4+ ions reduction is promoted over Ni-doped CeO2 NPs, whereas that of Ni2+ is hindered. Theoretical simulation of Ni L-edge spectra suggested that Ni dopant into ceria is in a square planar four-coordinate environment, in contrast to the familiar octahedral symmetry of bulk nickel oxides. Our results reveal that the surface chemistry of Ni-doped CeO2 is quite distinct as compared to that of the individual bulk oxides, which potentially can lead to a different performance of this material, notably in catalytic applications.
The ever-growing demand for Li-ion batteries requires high-capacity electrode materials that should also be environmentally benign, Co-free, secure and durable, to achieve an optimal compromise between sustainability and functional performances. Spinel LiMn2O4 (LMO) is a state-of-the-art material, which, in principle, could satisfy such requirements. However, an undesired cubic-tetragonal phase transition favors Jahn-Teller (J-T) spinel distortion, leading to severe capacity reduction upon cycling below 3 V. Here, we propose a novel dual-doping strategy for LMO, based on the partial substitution of Mn(III) with Fe(III) and Ti(IV) to design new active materials for high-capacity cathodes, namely LiFexMn2-x-yTiyO4 (LFMT), with Li/Mn ratio ranging between 1 and 1.7. The substitution of Mn with Fe and Ti suppresses the J-T distortion, which is often still evident in the case of Ti-doped LMO. This allows cycling in a wider voltage range (4.8-1.5 V), thus resulting in higher capacity and significantly improved stability. The lithiation mechanisms were investigated by combining ex-situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS analyses). It demonstrated that the only redox-active metal is Mn, while Fe and Ti are electrochemically inactive. The extensive electrochemical lithiation/delithiation of the LFMT compositions brought to unprecedented results, which give evidence of stabilizing cation disorder through the formation of Mn-rich and Mn-poor domains, which leades to two spinel phases with different Mn:Ti ratios. These insights into the lithiation mechanism pave the way for a better understanding of the doping chemistry and electrochemistry of Mn-based spinels as cathode materials for Li-ion batteries.
The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1–xSrxMnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.
High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO+1/2 O2 at 250 °C, CO2 is produced while bidentante carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorbtion geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft XAS together with the developed data analysis work-flow may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal–organic framework HKUST-1. We obtained direct evidence that Cu+ defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+ dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+ paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2 may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+ sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+ complexes and their reversible restoration upon exposure to gaseous CO2.
Although Ziegler–Natta (ZN) catalysts play a major role in the polyolefin market, a true understanding of their properties at the molecular level is still missing. In particular, there is a lack of knowledge on the electronic properties of Ti sites. Theoretical calculations predict that the electron density of the Ti sites in the precatalysts correlates with the activation energy for olefin insertion in the Ti-alkyl bond generated at these sites after activation by Al-alkyls. It is also well known that the effective charge on the Ti sites in the activated catalysts affects the olefin π-complexation. In this contribution, we exploit two electronic spectroscopies, UV–vis and Ti L2,3-edge near-edge X-ray absorption fine structure (NEXAFS), complemented with theoretical simulation to investigate three ZN precatalysts of increasing complexity (up to an industrial system) and the corresponding catalysts activated by triethylaluminum (TEAl). We provide compelling evidence for the presence of monomeric 6-fold-coordinated Ti4+ species in all of the precatalysts, which however differ in the effective charge on the Ti sites. We also unambiguously demonstrate that these sites are reduced by TEAl to two types of monomeric 5-coordinated Ti3+, either alkylated or not, and that the former are involved in ethylene polymerization. In addition, small TiCl3 clusters are formed in the industrial catalyst, likely due to the occurrence of severe reducing conditions within the catalyst pores. These data prove the potential of these two techniques, coupled with simulation, in providing an accurate description of the electronic properties of heterogeneous ZN catalysts.
Preferential oxidation of CO (COPrOx) is a catalytic reaction targeting the removal of trace amounts of CO from hydrogen-rich gas mixtures. Non-noble metal catalysts, such as Cu and Co, can be equally active to Pt for the reaction; however, their commercialization is limited by their poor stability. We have recently shown that CoO is the most active state of cobalt for COPrOx, but under certain reaction conditions, it is readily oxidized to Co3O4 and deactivates. Here, we report a simple method to stabilize the Co2+ state by vanadium addition. The V-promoted cobalt catalyst exhibits considerably higher activity and stability than pure cobalt. The nature of the catalytic active sites during COPrOx was established by operando NAP-XPS and NEXAFS, while the stability of the Co2+ state on the surface was verified by in situ NEXAFS at 1 bar pressure. The active phase consists of an ultra-thin cobalt-vanadate surface layer, containing tetrahedral V5+ and octahedral Co2+ cations, with an electronic and geometric structure that is deviating from the standard mixed bulk oxides. In addition, V addition helps to maintain the population of Co2+ species involved in the reaction, inhibiting carbonate species formation that are responsible for the deactivation. The promoting effect of V is discussed in terms of enhancement of CoO redox stability on the surface induced by electronic and structural modifications. These results demonstrate that V-promoted cobalt is a promising COPrOx catalyst and validate the application of in situ spectroscopy to provide the concept for designing better performing catalysts.
Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser‐based Jupyter notebook framework. It aims to provide an interactive and user‐friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on‐the‐fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user‐defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider‐based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising‐edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R‐factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.
Ti silicates, and in particular Titanium Silicalite‐1 (TS‐1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H 2 O 2 as oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unfathomed. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as main active species, has not been quantitatively discussed in the literature. In this work, we assess the structural features of defective Ti sites on the basis of electronic spectroscopies outcomes, as interpreted through quantum‐mechanical simulation. We disclose here strong evidences that the most common defective Ti sites, often reported in the TS‐1 literature, are monomeric Ti centers, embedded in the zeolite framework, having a distorted octahedral local symmetry.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
The mechanisms of CO oxidation on the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide were studied by means of operando soft X-ray absorption spectroscopy. We found that Cu is the active metal, and that Cu(II) can be rapidly reduced to Cu(I) by CO when the temperature is larger than 130 °C. Co and Ni do not have any role in this respect. The Cu(II) oxidation state can be easily but slowly recovered by treating the sample in O2 at ca. 250 °C. However, it should be noted that CuO is readily and irreversibly reduced to Cu(I) if treated in CO at T>100 °C. Thus, the main conclusion of this work is that the high configurational entropy of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O stabilizes the rock-salt structure and permits the oxidation/reduction of Cu to be reversible, thus permitting the catalytic cycle to take place.
Implementation of in-situ and operando experimental set-ups for bridging the pressure gap in characterization techniques based on monitoring of photoelectron emission has made significant achievements at several beamlines at Elettra synchrotron facility. These set-ups are now operational and have been successfully used to address unsolved issues exploring events occurring at solid–gas, solid–liquid and solid-solid interfaces of functional materials. The sections in the article communicate the research opportunities offered by the current set-ups at APE, BACH, ESCAmicroscopy and Nanospectroscopy beamlines and outline the next steps to overcome the present limits.
The redox process of pretreated Co3O4 thin film coatings has been studied by ambient pressure soft X-ray absorption spectroscopy. The Co3O4 coatings were composed of nanoparticles of about 10 nm in size as prepared by pulsed laser deposition. The thin film coatings were pretreated in He or in H2 up to 150 °C prior to exposure to the reactive gases. The reactivity toward carbon monoxide and oxygen was monitored by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy during gas exposures. The results indicate that the samples pretreated in He show reactivity only at high temperature, while the samples pretreated in H2 are reactive also at room temperature. X-ray photoemission spectroscopy measurements in ultra-high vacuum and NEXAFS simulations with the CTM4XAS code further specify the results.