We employed operando soft X-ray absorption spectroscopy (XAS) to monitor the changes in the valence states and spin properties of LaMn1–xCoxO3 catalysts subjected to a mixture of CO and O2 at ambient pressure. Guided by simulations based on charge transfer multiplet theory, we quantitatively analyze the Mn and Co 2p XAS as well as the oxygen K-edge XAS spectra during the reaction process. The Mn sites are particularly sensitive to the catalytic reaction, displaying dynamics in their oxidation state. When Co doping is introduced (x ≤ 0.5), Mn oxidizes from Mn2+ to Mn3+ and Mn4+, while Co largely maintains a valence state of Co2+. In the case of LaCoO3, we identify high-spin and low-spin Co3+ species combined with Co2+. Our investigation underscores the importance to consider the spin and valence states of catalyst materials under operando conditions.
We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the 𝜋𝜋* Dirac cones at the K point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
4Hb-TaS2 is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS2 and 1T-TaS2. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS2 fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS2 compared to the coupling in 2H-TaS2 that results in a pronounced spin-valley locking within 4Hb-TaS2.
The doping of metal oxides is an interesting route to increase catalyst activity and lower activation temperatures in H2 dissociation to replace Pt in catalysts for electrochemical devices. In this process, the roles of both the matrix and dopant cations are fundamental to understanding and designing more efficient catalysts. In this work, we have investigated the reduction process in pure and doped CeO2 films. We followed the oxidation states of Ce and dopants (Cu and Fe) during H2 exposure at ambient pressure by combining X-ray absorption spectroscopy and gas chromatography on 5 nm films in the temperature range of 300–620 K. We have observed that Cu doping (at concentrations of 5 and 14 at. %) promotes the ceria reduction, while the addition of Fe seems to have a limited impact on the oxide chemical reactivity only at low temperatures. Moreover, thanks to the chemical sensitivity of operando X-ray absorption spectroscopy, we were able to follow simultaneously the evolution of Ce and Cu oxidation states during the reaction, which has permitted to identify two distinct reduction processes taking place above and below 500 K. These measurements show that at low temperatures, the H2 dissociation takes place at the Cu1+ sites, thus explaining the higher reactivity of the Cu-doped samples. The described mechanism can help in the design of Pt-free catalysts with enhanced performances.
The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSbx (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSbx endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSbx thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSbx was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m−2 h−1. This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
In this work, which follows Part I that is dedicated to the precatalyst, we investigate the electronic properties and the accessibility of the Ti active sites in a highly active silica-supported Ziegler–Natta catalyst for industrial polyethylene production, applying a multi-scale, multi-technique approach. Complementary electronic spectroscopies (i.e. Ti K-edge XANES, Ti L2,3-edge NEXAFS and DR UV–Vis-NIR) reveal the coexistence of several titanium phases, whose relative amount depends on the concentration of the alkyl aluminum activator. In addition to β-TiCl3-like clusters and monomeric Ti(IV) sites, which are already present in the precatalyst, isolated Ti(III) sites and α-TiCl3-like clusters are formed in the presence of the activator. Two families of alkylated Ti(III) sites characterized by a different electron density are detected by IR spectroscopy of adsorbed CO, and two types of Ti-acyl species are formed upon CO insertion into the Ti-alkyl bond, characterized by a different extent of η2-coordination. The whole set of data suggests that TiCl3 clusters are preferentially formed at the exterior of the catalyst particles, likely as a consequence of Ti(III) mobility in the presence of strong Lewis acids, in most cases hampering the spectroscopic detection of isolated Ti(III) sites. In contrast, only monomeric Ti(III) sites are formed at the interior of the catalyst particles, characterized by a high electron density evocative of the presence of electron donors in the close proximity (e.g. aluminum alkoxide by-products). These sites are less accessible because of diffusion limitations, and only become visible by surface-sensitive spectroscopic methods (such as Ti L2,3-edge TEY-NEXAFS) upon the fragmentation of the catalyst particles.
Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2.
Magnesium chloride is a prototypical deliquescent material whose surface properties, although central for Ziegler–Natta cataysis, have so far remained elusive to experimental characterization. In this work, we use surface-selective X-ray absorption spectroscopy (XAS) at ambient pressure in combination with multivariate curve resolution, molecular dynamics, and XAS theoretical methods to track in real time and accurately describe the interaction between water vapor and the MgCl2 surface. By exposing MgCl2 to water vapor at temperatures between 595 and 391 K, we show that water is preferentially adsorbed on five-coordinated Mg2+ sites in an octahedral configuration, confirming previous theoretical predictions, and find that MgCl2 is capable of retaining a significant amount of adsorbed water even under prolonged heating to 595 K. As a consequence, our work provides first experimental insights into the unique surface affinity of MgCl2 for atmospheric water. The developed technique is proven highly sensitive to the modifications induced by adsorbates on a given low-Z metal based surface and may be useful in the toolbox required to disentangle the mechanisms of interfacial chemical processes.
Given the urgency of achieving the forthcoming zero emission targets, the research of green fuels and efficient catalysts able to easily convert them in other valuable compounds is fundamental. The work presented in this thesis is focused on the application of an innovative spectroscopic technique, the operando Soft X-Rays NEXAFS spectroscopy, in order to investigate the surface reactivity of heterogeneous catalysts. In fact, it is well known the importance that operando characterizations have acquired in recent years, allowing to study a material at its working conditions. Since the technique requires the use of Synchrotron Radiation and a specific experimental setup, all the measurements reported in this thesis have been performed exploiting a home made reaction cell developed at the APE-HE beamline, at Elettra Synchrotron (Trieste). In this thesis work, we investigated the possibility of coupling the operando NEXAFS technique with other in situ spectroscopies, together with standard ex situ characterizations and computational simulations. This multitechnique approach allowed to extract the maximum potential of the technique, addressing its role as a key tool in the optic of speeding up the design of efficient heterogeneous catalysts.
The catalytic reactions investigated in this thesis are focused on methanol valorization, given its great potential in numerous applications related to the energy transition. In detail, we focused our first investigation on methanol production through the direct partial oxidation of methane, catalysed by a CeO2/CuO composite synthesized using a scalable and green milling process. We exploited the combination of in situ DRIFT and operando Soft X-Ray NEXAFS spectroscopies to monitor at the same time the electronic structure modifications occurring at the catalyst surface and the adsorbates evolution during the different reaction steps.
The operando analysis of the Cu L2,3 and Ce M4,5 edges during the catalyst thermal activation allowed us to detect a charge transfer from Ce3+ surface sites to Cu2+ atoms, resulting in the formation of reactive sites close to the CeO2/CuO interface. When the sample was exposed to CH4 at 250°C and at a pressure of 1 bar, a Cu2+ → Cu+ reduction was observed, indicating that the catalyst is able to activate the methane molecule. At the same time, DRIFT spectra shown the formation of methoxy and formate species, that are products of methane activation on the surface. Adding an oxidizing agent (O2), Cu+ sites were re-oxidized to Cu2+, together with the disappearing of the methoxy and formate related structures in the DRIFT spectra. The results indicated the reversibility of the chemical modifications occurring at the catalyst surface. During the operando NEXAFS experiment, the reaction products were monitored with an online micro-GC: the main products observed during the reaction were CO2, H2O, CH2O and CH3OH, indicating that total and partial oxidation of methane were occurring. As a comparison, an equivalent experiment has been conducted on a similar CeO2/CuO catalyst synthetized with a conventional impregnation method. In this case, no spectroscopic modification were observed with both NEXAFS and DRIFT techniques, confirming that the synthetic method used is crucial in creating specific active sites for methane activation and oxidation. The experimental results have been validated through DFT calculations, which confirmed that when CuO and CeO2 surfaces merge during the synthesis, a net charge transfer from Ce to Cu atoms occurs in proximity of the CeO2 − CuO interface. Another promising route to valorize methanol is represented by its catalytic decomposition to syngas mixture (H2 + CO), whose reaction mechanism was investigated in the second part of the thesis. Indeed, one major challenge for this reaction is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. In the present study, we illustrate a surface reactivity study of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory (DFT), operando NEXAFS at ambient pressure, in situ XPS and high-resolution transmission electron microscopy (HR-TEM). For Ni3Sn4, we discovered that the catalytic reaction is driven by surface tin-oxide phases, able to protect the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, exploiting the online micro-GC connected to the operando NEXAFS reaction cell and by comparing the results with a Ni3Sn2 compound, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide–water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials MX2 (M=V, Mn, Ni and X=Cl, Br, I). We first show that consideration of general properties such as filling and hybridization enables to formulate the trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3d transition metal ions do not strongly contribute to the anisotropic component of the intersite exchange interaction. Consequently, we find that the corresponding SOC matrix elements differ significantly from the atomic limit. In the next step and by using two ab initio based complementary approaches, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.
This work presents an original approach to preparing pure and Ni-doped CeO2 nanoparticles (NPs) that can be directly drop-casted on a substrate or calcined to form powders. The reduction of the NPs in H2 is very different than the one usually anticipated for supported Ni–CeO2 catalysts. In situ soft X-ray absorption and infrared spectroscopies revealed that the reduction of Ce4+ into Ce3+ in H2 proceeds via simultaneous oxidation of Ni2+ ions into Niδ+ (2<δ<3). Comparison with reference samples indicates that Ce4+ ions reduction is promoted over Ni-doped CeO2 NPs, whereas that of Ni2+ is hindered. Theoretical simulation of Ni L-edge spectra suggested that Ni dopant into ceria is in a square planar four-coordinate environment, in contrast to the familiar octahedral symmetry of bulk nickel oxides. Our results reveal that the surface chemistry of Ni-doped CeO2 is quite distinct as compared to that of the individual bulk oxides, which potentially can lead to a different performance of this material, notably in catalytic applications.
The ever-growing demand for Li-ion batteries requires high-capacity electrode materials that should also be environmentally benign, Co-free, secure and durable, to achieve an optimal compromise between sustainability and functional performances. Spinel LiMn2O4 (LMO) is a state-of-the-art material, which, in principle, could satisfy such requirements. However, an undesired cubic-tetragonal phase transition favors Jahn-Teller (J-T) spinel distortion, leading to severe capacity reduction upon cycling below 3 V. Here, we propose a novel dual-doping strategy for LMO, based on the partial substitution of Mn(III) with Fe(III) and Ti(IV) to design new active materials for high-capacity cathodes, namely LiFexMn2-x-yTiyO4 (LFMT), with Li/Mn ratio ranging between 1 and 1.7. The substitution of Mn with Fe and Ti suppresses the J-T distortion, which is often still evident in the case of Ti-doped LMO. This allows cycling in a wider voltage range (4.8-1.5 V), thus resulting in higher capacity and significantly improved stability. The lithiation mechanisms were investigated by combining ex-situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS analyses). It demonstrated that the only redox-active metal is Mn, while Fe and Ti are electrochemically inactive. The extensive electrochemical lithiation/delithiation of the LFMT compositions brought to unprecedented results, which give evidence of stabilizing cation disorder through the formation of Mn-rich and Mn-poor domains, which leades to two spinel phases with different Mn:Ti ratios. These insights into the lithiation mechanism pave the way for a better understanding of the doping chemistry and electrochemistry of Mn-based spinels as cathode materials for Li-ion batteries.
Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models
Multiferroic materials have attracted wide interest because of their exceptional static1,2,3 and dynamical4,5,6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.
Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX2 (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl2 single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.
High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO+1/2 O2 at 250 °C, CO2 is produced while bidentante carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorbtion geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft XAS together with the developed data analysis work-flow may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.
Although Ziegler–Natta (ZN) catalysts play a major role in the polyolefin market, a true understanding of their properties at the molecular level is still missing. In particular, there is a lack of knowledge on the electronic properties of Ti sites. Theoretical calculations predict that the electron density of the Ti sites in the precatalysts correlates with the activation energy for olefin insertion in the Ti-alkyl bond generated at these sites after activation by Al-alkyls. It is also well known that the effective charge on the Ti sites in the activated catalysts affects the olefin π-complexation. In this contribution, we exploit two electronic spectroscopies, UV–vis and Ti L2,3-edge near-edge X-ray absorption fine structure (NEXAFS), complemented with theoretical simulation to investigate three ZN precatalysts of increasing complexity (up to an industrial system) and the corresponding catalysts activated by triethylaluminum (TEAl). We provide compelling evidence for the presence of monomeric 6-fold-coordinated Ti4+ species in all of the precatalysts, which however differ in the effective charge on the Ti sites. We also unambiguously demonstrate that these sites are reduced by TEAl to two types of monomeric 5-coordinated Ti3+, either alkylated or not, and that the former are involved in ethylene polymerization. In addition, small TiCl3 clusters are formed in the industrial catalyst, likely due to the occurrence of severe reducing conditions within the catalyst pores. These data prove the potential of these two techniques, coupled with simulation, in providing an accurate description of the electronic properties of heterogeneous ZN catalysts.
The magnetic properties of the two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of t2g orbital splitting and carried out in comparison with the CrI3 prototypical case, where the splitting is negligible. In VI3 bilayers, the empty a1g state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different VI3 stackings (labeled AB and AB′), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the AB′ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
Preferential oxidation of CO (COPrOx) is a catalytic reaction targeting the removal of trace amounts of CO from hydrogen-rich gas mixtures. Non-noble metal catalysts, such as Cu and Co, can be equally active to Pt for the reaction; however, their commercialization is limited by their poor stability. We have recently shown that CoO is the most active state of cobalt for COPrOx, but under certain reaction conditions, it is readily oxidized to Co3O4 and deactivates. Here, we report a simple method to stabilize the Co2+ state by vanadium addition. The V-promoted cobalt catalyst exhibits considerably higher activity and stability than pure cobalt. The nature of the catalytic active sites during COPrOx was established by operando NAP-XPS and NEXAFS, while the stability of the Co2+ state on the surface was verified by in situ NEXAFS at 1 bar pressure. The active phase consists of an ultra-thin cobalt-vanadate surface layer, containing tetrahedral V5+ and octahedral Co2+ cations, with an electronic and geometric structure that is deviating from the standard mixed bulk oxides. In addition, V addition helps to maintain the population of Co2+ species involved in the reaction, inhibiting carbonate species formation that are responsible for the deactivation. The promoting effect of V is discussed in terms of enhancement of CoO redox stability on the surface induced by electronic and structural modifications. These results demonstrate that V-promoted cobalt is a promising COPrOx catalyst and validate the application of in situ spectroscopy to provide the concept for designing better performing catalysts.
Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser‐based Jupyter notebook framework. It aims to provide an interactive and user‐friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on‐the‐fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user‐defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider‐based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising‐edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R‐factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.
We study the 2×2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe2 in the 2D limit.
Out-of-plane Ga2Se3 nanowires are grown by molecular beam epitaxy via Au-assisted heterovalent exchange reaction on GaAs substrates in the absence of Ga deposition. It is shown that at a suitable temperature around 560 degrees C the Audecorated GaAs substrate releases Ga atoms, which react with the incoming Se and feed the nanowire growth. The nanowire composition, crystal structure, and morphology are characterized by Raman spectroscopy and electron microscopy. The growth mechanism is investigated by X-ray photoelectron spectroscopy. We explore the growth parameter window and find an interesting effect of shortening of the nanowires after a certain maximum length. The nanowire growth is described within a diffusion transport model, which explains the nonmonotonic behavior of the nanowire length versus the growth parameters. Nanowire shortening is explained by the blocking of Ga supply from the GaAs substrate by thick, in-plane worm-like Ga2Se3 structures, which grow concomitantly with the nanowires, followed by backward diffusion of Ga atoms from the nanowires down to the substrate surface.
Ti silicates, and in particular Titanium Silicalite‐1 (TS‐1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H 2 O 2 as oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unfathomed. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as main active species, has not been quantitatively discussed in the literature. In this work, we assess the structural features of defective Ti sites on the basis of electronic spectroscopies outcomes, as interpreted through quantum‐mechanical simulation. We disclose here strong evidences that the most common defective Ti sites, often reported in the TS‐1 literature, are monomeric Ti centers, embedded in the zeolite framework, having a distorted octahedral local symmetry.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
Bulk PtSn4 has recently attracted the interest of the scientific community for the presence of electronic states exhibiting Dirac node arcs, enabling possible applications in nanoelectronics. Here, by means of surface-science experiments and density functional theory, we assess its suitability for catalysis by studying the chemical reactivity of the (0 1 0)-oriented PtSn4 surface toward CO, H2O, O2 molecules at room temperature and, moreover, its stability in air. We demonstrate that the catalytic activity of PtSn4 is determined by the composition of the outermost atomic layer. Specifically, we find that the surface termination for PtSn4 crystals cleaved in vacuum is an atomic Sn layer, which is totally free from any CO poisoning. In oxygen-rich environment, as well as in ambient atmosphere, the surface termination is a SnOx skin including SnO and SnO2 in comparable amount. However, valence-band states, including those forming Dirac node arcs, are only slightly affected by surface modifications. The astonishingly beneficial influence of surface oxidation on catalytic activity has been demonstrated by electrocatalytic tests evidencing a reduction of the Tafel slope, from 442 down to 86 mV dec−1, whose origin has been explained by our theoretical model. The use of surface-science tools to tune the chemical reactivity of PtSn4 opens the way toward its effective use in catalysis, especially for hydrogen evolution reaction and oxygen evolution reaction.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
The mechanisms of CO oxidation on the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide were studied by means of operando soft X-ray absorption spectroscopy. We found that Cu is the active metal, and that Cu(II) can be rapidly reduced to Cu(I) by CO when the temperature is larger than 130 °C. Co and Ni do not have any role in this respect. The Cu(II) oxidation state can be easily but slowly recovered by treating the sample in O2 at ca. 250 °C. However, it should be noted that CuO is readily and irreversibly reduced to Cu(I) if treated in CO at T>100 °C. Thus, the main conclusion of this work is that the high configurational entropy of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O stabilizes the rock-salt structure and permits the oxidation/reduction of Cu to be reversible, thus permitting the catalytic cycle to take place.
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
Implementation of in-situ and operando experimental set-ups for bridging the pressure gap in characterization techniques based on monitoring of photoelectron emission has made significant achievements at several beamlines at Elettra synchrotron facility. These set-ups are now operational and have been successfully used to address unsolved issues exploring events occurring at solid–gas, solid–liquid and solid-solid interfaces of functional materials. The sections in the article communicate the research opportunities offered by the current set-ups at APE, BACH, ESCAmicroscopy and Nanospectroscopy beamlines and outline the next steps to overcome the present limits.
The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.
Palladium ditelluride (PdTe2) is a novel transition‐metal dichalcogenide exhibiting type‐II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface‐science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter‐wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ≈+12 kJ mol−1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub‐nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2‐based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2‐based millimeter‐wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2‐based high‐temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were produced via hot-injection from metal chloride precursors. A systematic investigation of the influence of synthesis conditions on composition, size and microstructure of CZTS NCs is presented. The results show that the solvent amount (oleylamine) is a key parameter in the synthesis of this quaternary chalcogenide: a low solvent content leads to CZTS NCs with a prominent kesterite phase with the desired composition for use as absorber material in thin film photovoltaic cells. It is also observed that lowering the injection temperature (250 °C) favours formation of CZTS NCs in the wurtzite phase. The effect of different high temperature thermal treatments on the grain growth is also shown: large crystals are obtained with annealing in inert atmosphere, whereas nanocrystalline films are obtained introducing sulphur vapour during the heat treatment. A correlation between the grain dimension and the carbonaceous residues in the final films is investigated. It is shown that the grain growth is hindered by organic residues, amount and nature of which depend on the heat treatment atmosphere. In fact, oleylamine is removed by a complex pyrolytic process, which is affected by the presence of sulphur vapour. The latter favours the stability of oleylamine residuals against its non-oxidative release.
The band inversions that generate the topologically non-trivial band gaps of topological insulators and the isolated Dirac touching points of three-dimensional Dirac semimetals generally arise from the crossings of electronic states derived from different orbital manifolds. Recently, the concept of single orbital-manifold band inversions occurring along high-symmetry lines has been demonstrated, stabilising multiple bulk and surface Dirac fermions. Here, we discuss the underlying ingredients necessary to achieve such phases, and discuss their existence within the family of transition metal dichalcogenides. We show how their three-dimensional band structures naturally produce only small k z projected band gaps, and demonstrate how these play a significant role in shaping the surface electronic structure of these materials. We demonstrate, through spin- and angle-resolved photoemission and density functional theory calculations, how the surface electronic structures of the group-X TMDs PtSe2 and PdTe2 are host to up to five distinct surface states, each with complex band dispersions and spin textures. Finally, we discuss how the origin of several recently-realised instances of topological phenomena in systems outside of the TMDs, including the iron-based superconductors, can be understood as a consequence of the same underlying mechanism driving k z -mediated band inversions in the TMDs.
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface.
Le proprietà ottiche, elettroniche e magnetiche dei solidi e delle loro superfici dipendono dalla struttura degli stati elettronici entro alcuni eV dal livello di Fermi. I calcoli della struttura elettronica a bande sono efficaci solo nel caso di materiali a bassa interazione elettrone-elettrone (correlazione). L'esperimento e la guida necessaria per lo studio delle proprietà elettroniche dei solidi e delle loro superfici, ed in particolare la spettroscopia di fotoemissione (photoemission spectroscopy - PES) che si basa sulla misura dello spettro energetico degli elettroni emessi da un solido eccitato da un fascio di fotoni monocromatici di energia eccedente la funzione lavoro. La risoluzione dell'angolo di emissione (Angle-resolved photemission spectroscopy - ARPES) permette di avere informazioni sulla legge di dispersione En(k) dello stato elettronico iniziale, mentre la misura del grado di polarizzazione in spin del fascio di elettroni completa il set di numeri quantici, fornendo un dato molto importante per lo studio delle correlazioni elettroniche.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor
PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
The superconducting properties of Sr1–xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1–xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/
BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the
BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano that has been carried out, starting in November 4236, mostly at the Laboratorio TASC of IOM-CNR3 in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures4, in the framework of the NFFA and APE-beamline facilites5, as well as by accessing international large scale infrastructures and laboratories. The activity has addressed the development of experimental methodologies and novel instrumentation oriented to the study of the dynamical properties of highly correlated materials after high energy excitation. The science programme has been carried out by exploiting ultrafast femtosecond probes from the optical regime (Ti-Sa lasers, fibre laser oscillators) to the extreme UV-soft X rays at FERMI, to the picosecond hard X-rays from the SPring-: and Diamond synchrotron radiation source. The sample synthesis of correlated oxides and its characterization has been performed within the NFFA facility and APE-group collaboration in Trieste as well as the design and construction of the all new laser High Harmonic Generation beam line NFFA-SPRINT and its end station for time resolved vectorial electron spin polarimetry.
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique.
We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.
Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.
This thesis reports on the construction and commissioning tests of the novel experimental set-up needed for a long term research project, named ULTRASPIN, aiming at establishing time resolved spin-resolved photoemission measurements with ultra-short (10−14 s) photon pulses from Free Electron Laser beamlines or from table-top UV/Soft-X beamlines.
The ULTRASPIN project started in the summer 2013, building on competences and instrumentation in part available from the APE-beamline group of IOM-CNR at Elettra, and with the partial support of an European contract (EXSTASY-EXperimental STation for the Analysis of the Spin Dynamics, Grant agreement N.PIIF-GA-2012-326641) and related fellowship of a world-expert of Mott scattering.
I have been involved from the beginning in the final design, in the construction and commissioning of a novel stray-field free UHV apparatus for preparing and hosting atomically clean surfaces and for measuring the spin-polarization of the photo-emitted electrons with “single pulse” sensitivity down to the 10−14 s time scale, as well as in the standard high frequency spectroscopy mode. In the commissioning phase I have participated to test experiments on ULTRASPIN as well as to relevant experiments conducted in other apparatuses.