This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Universit`a degli Studi di Milano, that has been carried out since November 2019 at the Istituto Officina dei Materiali of the Consiglio Nazionale delle Ricerche (IOM-CNR) in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures and in the framework of the NFFA facility. My experimental activity employed complementary spectroscopy and polarimetry techniques oriented to address the characterisation of electronic and spin properties of systems with decreasing dimensionality. This programme has been conducted by exploiting state-of-the-art infrastructures to generate visible, UV and EUV ultrashort pulses (tabletop lasers and HHG at NFFA-SPRINT laboratory) and soft X-ray synchrotron light (at Elettra, Diamond and ESRF synchrotron light sources). I used photoemission as the main tool in my investigation, supplementing my results with absorption spectroscopy. I focused on three materials, Fe(001)-p(1x1)O/MgO, EuSn2P2 and VI3, of high interest in modern and next-generation magnetic devices. In the three systems I studied the electronic band structure to identify key features hinting at the bound electrons behaviour. I investigated the properties of the magnetically ordered phases and found evidence of the reduced dimensionality in the emergence of atypical spin ordering and the increasingly manifest electron correlation phenomena. The information retained by band electrons is critical to access the spin polarisation of the bands and to give insight into the effects of spatial confinement on the spin degree of freedom.
NFFA Thesis
University of Milan Master's Degree Thesis, (2019)
Spin-polarization measurement of the quantum yield from solid surfaces as excited by high harmonics of 100 fs-scale laser sources
La misura della polarizzazione in spin di un fascio di elettroni fotoemessi da una superficie ferromagnetica permette di studiare in modo diretto la struttura elettronica determinata dall’interazione di scambio e quindi il momento magnetico di spin del sistema, caratterizzandone il comportamento magnetico. Da una parte lo sviluppo del campo della spintronica, dall’altra la richiesta sempre crescente di strumenti e dispositivi di immagazzinamento e trattamento dati ad alte prestazioni, marcano la necessità di esplorare le configurazioni degli stati elettronici e le loro eccitazioni.
NFFA Thesis
University of Milan PhD Thesis, (2017)
Probing electron correlation dynamics: a multi-technique study applied to the half-metallic oxide La3-xSrxMnO5
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano that has been carried out, starting in November 4236, mostly at the Laboratorio TASC of IOM-CNR3 in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures4, in the framework of the NFFA and APE-beamline facilites5, as well as by accessing international large scale infrastructures and laboratories. The activity has addressed the development of experimental methodologies and novel instrumentation oriented to the study of the dynamical properties of highly correlated materials after high energy excitation. The science programme has been carried out by exploiting ultrafast femtosecond probes from the optical regime (Ti-Sa lasers, fibre laser oscillators) to the extreme UV-soft X rays at FERMI, to the picosecond hard X-rays from the SPring-: and Diamond synchrotron radiation source. The sample synthesis of correlated oxides and its characterization has been performed within the NFFA facility and APE-group collaboration in Trieste as well as the design and construction of the all new laser High Harmonic Generation beam line NFFA-SPRINT and its end station for time resolved vectorial electron spin polarimetry.
NFFA Thesis
University of Modena and Reggio Emilia Master's Thesis, (2014)
Towards Spin-resolved/Time-resolved Photoelectron Spectroscopy at the fs time scale: construction and commissioning of the ULTRASPIN apparatus
This thesis reports on the construction and commissioning tests of the novel experimental set-up needed for a long term research project, named ULTRASPIN, aiming at establishing time resolved spin-resolved photoemission measurements with ultra-short (10−14 s) photon pulses from Free Electron Laser beamlines or from table-top UV/Soft-X beamlines.
The ULTRASPIN project started in the summer 2013, building on competences and instrumentation in part available from the APE-beamline group of IOM-CNR at Elettra, and with the partial support of an European contract (EXSTASY-EXperimental STation for the Analysis of the Spin Dynamics, Grant agreement N.PIIF-GA-2012-326641) and related fellowship of a world-expert of Mott scattering.
I have been involved from the beginning in the final design, in the construction and commissioning of a novel stray-field free UHV apparatus for preparing and hosting atomically clean surfaces and for measuring the spin-polarization of the photo-emitted electrons with “single pulse” sensitivity down to the 10−14 s time scale, as well as in the standard high frequency spectroscopy mode. In the commissioning phase I have participated to test experiments on ULTRASPIN as well as to relevant experiments conducted in other apparatuses.
Login
You're being redirected, please wait few moments...