A Novel High Order Harmonic Source for Time- and Angle-Resolved Photoemission Experiments
P. Miotti, F. Cilento, R. Cucini, A. De Luisa, A. Fondacaro, F. Frassetto, D. Kopić, D. Payne, A. Sterzi, T. Pincelli, G. Panaccione, F. Parmigiani, G. Rossi, and L. Poletto
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
From our users
J. Appl. Phys., 123, 123901, (2018)
Ferroelectric Control of the Spin Texture in GeTe
C. Rinaldi , S. Varotto, M. Asa, J. Sławińska, J. Fujii, G. Vinai, S. Cecchi, D. Di Sante, R. Calarco, I. Vobornik, G. Panaccione, S. Picozzi, R. Bertacco
The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
From our users
Chemical Physics Letters, 683. 135, (2017)
Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces
R. Costantini, T. Pincelli, A. Cossaro, A. Verdini, A. Goldoni, S. Cichoň, M. Caputo, M.Pedio, G. Panaccione, M.G. Silly, F. Sirotti, A. Morgante, M. Dell'Angela
The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.
Login
You're being redirected, please wait few moments...