The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.
From our users
OSA Technical Digest, paper EW2B.5, (2018)
A Novel High Order Harmonic Source for Time- and Angle-Resolved Photoemission Experiments
P. Miotti, F. Cilento, R. Cucini, A. De Luisa, A. Fondacaro, F. Frassetto, D. Kopić, D. Payne, A. Sterzi, T. Pincelli, G. Panaccione, F. Parmigiani, G. Rossi, and L. Poletto
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
From our users
Phys. Rev. Materials, 2, 033401, (2018)
Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTiO3
M. Asa, G. Vinai, J.L. Hart, C. Autieri, C. Rinaldi, P. Torelli, G. Panaccione, M.L. Taheri, S. Picozzi, and M. Cantoni
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/ BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
From our users
Chemical Physics Letters, 683. 135, (2017)
Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces
R. Costantini, T. Pincelli, A. Cossaro, A. Verdini, A. Goldoni, S. Cichoň, M. Caputo, M.Pedio, G. Panaccione, M.G. Silly, F. Sirotti, A. Morgante, M. Dell'Angela
The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.
Login
You're being redirected, please wait few moments...