A-site doped SrTiO3 is considered as a promising substitute for traditional anodic metals in solid oxide fuel cells (SOFCs). In this study, we present the reactivity of La0.2Sr0.25Ca0.45TiO3 (LCSTO), La0.2Sr0.7TiO3 (LSTO), and SrTiO3 (STO) toward H2 by operando ambient pressure NEXAFS spectroscopy and theoretical spectra simulation with FDMNES code. The samples were synthesized by MBE (molecular beam epitaxy), hydrothermal, and modified-Pechini routes. We found that the reducibility of the samples depends not only on their stoichiometry but also on the morphology, which is determined by the synthetic method. The results of these experiments give insight into the reducibility of Ti4+ in perovskites as well as the opportunity to further optimize the synthesis of these materials to obtain the best performance for SOFC applications.
We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the 𝜋𝜋* Dirac cones at the K point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin-orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials' architectures.
In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S–Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.
Hybrid elastic and spin waves hold promises for energy-efficient and versatile generation and detection of magnetic signals, with potentially long coherence times. Here we report on the combined elastic and magnetic dynamics in a one-dimensional magnetomechanical crystal composed of an array of magnetic nanostripes. Phononic and magnonic modes are impulsively excited by an optical ultrafast trigger and their decay is monitored by time-resolved magneto-optical Kerr effect. Complementary Brillouin light scattering measurements and micromagnetic simulations concur in a unified picture, in which the strength and degree of mixing of coherent and dissipative coupling of the quasiparticles are determined quantitatively.
4Hb-TaS2 is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS2 and 1T-TaS2. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS2 fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS2 compared to the coupling in 2H-TaS2 that results in a pronounced spin-valley locking within 4Hb-TaS2.
Understanding the ultrafast demagnetization of transition metals requires pump-probe experiments sensitive to the time evolution of the electronic, spin, and lattice thermodynamic baths. By means of time-resolved photoelectron energy and spin-polarization measurements in the low-pump-fluence regime on iron, we disentangle the different dynamics of hot electrons and demagnetization in the subpicosecond and picosecond time range. We observe a broadening of the Fermi-Dirac distribution, following the excitation of nonthermal electrons at specific region of the iron valence band. The corresponding reduction of the spin polarization is remarkably delayed with respect to the dynamics of electronic temperature. The experimental results are corroborated with a microscopic 3-temperature model highlighting the role of thermal disorder in the quenching of the average spin magnetic moment, and indicating Elliot-Yafet type spin-flip scattering as the main mediation mechanism, with a spin-flip probability of 0.1 and a rate of energy exchange between electrons and lattice of 2.5Kfs−1.
The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1,2,3,4,5,6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin–orbital chiral currents at the surface of the material8,9,10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.
AgCrSe2 exhibits remarkably high ionic conduction, an inversion symmetry-breaking structural transition, and is host to complex non-colinear magnetic orders. Despite its attractive physical and chemical properties and its potential for technological applications, studies of this compound to date are focused almost exclusively on bulk samples. Here, we report the growth of AgCrSe2 thin films via molecular beam epitaxy. Single-orientated epitaxial growth was confirmed by x-ray diffraction, while resonant photoemission spectroscopy measurements indicate a consistent electronic structure as compared to bulk single crystals. We further demonstrate significant flexibility of the grain morphology and cation stoichiometry of this compound via control of the growth parameters, paving the way for the targeted engineering of the electronic and chemical properties of AgCrSe2 in thin-film form.
Long-range electronic ordering descending from a metallic parent state constitutes a rich playground to study the interplay of structural and electronic degrees of freedom. In this framework, kagome metals are in the most interesting regime where both phonon and electronically mediated couplings are significant. Several of these systems undergo a charge density wave transition. However, to date, the origin and the main driving force behind this charge order is elusive. Here, we use the kagome metal ScV6Sn6 as a platform to investigate this problem, since it features both a kagome-derived nested Fermi surface and van-Hove singularities near the Fermi level, and a charge-ordered phase that strongly affects its physical properties. By combining time-resolved reflectivity, first principles calculations and photo-emission experiments, we identify the structural degrees of freedom to play a fundamental role in the stabilization of charge order, indicating that ScV6Sn6 features an instance of charge order predominantly originating from phonons.
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.
Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2.
Kagome materials have emerged as a setting for emergent electronic phenomena that encompass different aspects of symmetry and topology. It is debated whether the XV6Sn6 kagome family (where X is a rare-earth element), a recently discovered family of bilayer kagome metals, hosts a topologically non-trivial ground state resulting from the opening of spin–orbit coupling gaps. These states would carry a finite spin Berry curvature, and topological surface states. Here we investigate the spin and electronic structure of the XV6Sn6 kagome family. We obtain evidence for a finite spin Berry curvature contribution at the centre of the Brillouin zone, where the nearly flat band detaches from the dispersing Dirac band because of spin–orbit coupling. In addition, the spin Berry curvature is further investigated in the charge density wave regime of ScV6Sn6 and it is found to be robust against the onset of the temperature-driven ordered phase. Utilizing the sensitivity of angle-resolved photoemission spectroscopy to the spin and orbital angular momentum, our work unveils the spin Berry curvature of topological kagome metals and helps to define its spectroscopic fingerprint.
VO2 is one of the most studied vanadium oxides because it undergoes a reversible metal-insulator transition (MIT) upon heating with a critical temperature of around 340 K. One of the most overlooked aspects of VO2 is the band’s anisotropy in the metallic phase when the Fermi level is crossed by two bands: π* and d||. They are oriented perpendicularly in one respect to the other, hence generating anisotropy. One of the parameters tuning MIT properties is the unbalance of the electron population of π* and d|| bands that arise from their different energy position with respect to the Fermi level. In systems with reduced dimensionality, the electron population disproportion is different with respect to the bulk leading to a different anisotropy. Investigating such a system with a band-selective spectroscopic tool is mandatory. In this manuscript, we show the results of the investigation of a single crystalline 8 nm VO2/TiO2(101) film. We report on the effectiveness of linearly polarized resonant photoemission (ResPES) as a band-selective technique probing the intrinsic anisotropy of VO2.
In the last decade, reducing the dimensionality of materials to few atomic layers thickness has allowed exploring new physical properties and functionalities otherwise absent out of the two dimensional limit. In this regime, interfaces and interlayers play a crucial role. Here, we investigate their influence on the electronic properties and structural quality of ultrathin Cr2O3 on Pt(111), in presence of a multidomain graphene intralayer. Specifically, by combining Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy and X-ray Absorption Spectroscopy, we confirm the growth of high-quality ultrathin Cr2O3 on bare Pt, with sharp surface reconstructions, proper stoichiometry and good electronic quality. Once a multidomain graphene intralayer is included at the metal/oxide interface, the Cr2O3 maintained its correct stoichiometry and a comparable electronic quality, even at the very first monolayers, despite the partially lost of the morphological long-range order. These results show how ultrathin Cr2O3 films are slightly affected by the interfacial epitaxial quality from the electronic point of view, making them potential candidates for graphene-integrated heterostructures.
We report on the growth and characterization of epitaxial YBa2Cu3O7−δ (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y3Al5O12 (Nd:YAG) pulsed laser source (λ = 1064 nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature ∼ 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.
Here, we present an integrated ultra-high-vacuum (UHV) apparatus for the growth of complex materials and heterostructures. The specific growth technique is the Pulsed Laser Deposition (PLD) by means of a dual-laser source based on an excimer KrF ultraviolet and solid-state Nd:YAG infra-red lasers. By taking advantage of the two laser sources—both lasers can be independently used within the deposition chambers—a large number of different materials—ranging from oxides to metals, to selenides, and others—can be successfully grown in the form of thin films and heterostructures. All of the samples can be in situ transferred between the deposition chambers and the analysis chambers by using vessels and holders’ manipulators. The apparatus also offers the possibility to transfer samples to remote instrumentation under UHV conditions by means of commercially available UHV-suitcases. The dual-PLD operates for in-house research as well as user facility in combination with the Advanced Photo-electric Effect beamline at the Elettra synchrotron radiation facility in Trieste and allows synchrotron-based photo-emission as well as x-ray absorption experiments on pristine films and heterostructures.
V2O3 presents a complex interrelationship between the metal–insulator transition and the structural rhombohedral-monoclinic one in temperature, as a function of sample thickness. Whilst in bulk V2O3 the two transitions coincide on the temperature scale, at 15 nm thickness a fully independent Mott-like transition occurs at lower temperature, with no corresponding structural changes perhaps related to epitaxial strain. It is therefore of relevance to investigate the thin and ultrathin film growth to pinpoint the chemical, electronic and structural phase phenomenology and the role of the interface with the substrate. Here we present results on the thickness dependent properties of V2O3 from 1 nm up to 40 nm thick as grown on c-plane Al2O3 substrates by exploiting variable sampling depth probes. The surface morphology of stoichiometric ultra-thin V2O3 layers evolves from islands-like to continuous flat film with thickness, with implications on the overall properties.
The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O3-0.4PbTiO3 (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.
It is well-known that all the phases of the manufacturing influence the extraordinary aesthetic and acoustic features of Stradivari’s instruments. However, these masterpieces still keep some of their secrets hidden by the lack of documentary evidence. In particular, there is not a general consensus on the use of a protein-based ground coating directly spread on the wood surface by the Cremonese Master. The present work demonstrates that infrared scattering-type scanning near-fields optical microscopy (s-SNOM) may provide unprecedented information on very complex cross-sectioned microsamples collected from two of Stradivari’s violins, nanoresolved chemical sensitivity being the turning point for detecting minute traces of a specific compound, namely proteins, hidden by the matrix when macro or micro sampling approaches are exploited. This nanoresolved chemical-sensitive technique contributed new and robust evidence to the long-debated question about the use of proteinaceous materials by Stradivari.
The generation and control of surface acoustic waves (SAWs) in a magnetic material are objects of an intense research effort focused on magnetoelastic properties, with fruitful ramifications in spin-wave-based quantum logic and magnonics. We implement a transient grating setup to optically generate SAWs also seeding coherent spin waves via magnetoelastic coupling in ferromagnetic media. In this work we report on SAW-driven ferromagnetic resonance (FMR) experiments performed on polycrystalline Ni thin films in combination with time-resolved Faraday polarimetry, which allows extraction of the value of the effective magnetization and of the Gilbert damping. The results are in full agreement with measurements on the very same samples from standard FMR. Higher-order effects due to parametric modulation of the magnetization dynamics, such as down-conversion, up-conversion, and frequency mixing, are observed, testifying the high sensitivity of this technique.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal–insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal–insulator transition by implementing V2O3 thin films in devices.
The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1–xSrxMnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.
The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.
We report the integration of high-quality epitaxial La2/3Sr1/3MnO3 (LSMO) thin films onto SrTiO3 buffered Silicon-on-Sapphire (SOS) substrates by combining state-of-the-art thin film growth techniques such as molecular beam epitaxy and pulsed laser deposition. Detailed structural, magnetic and electrical characterizations of the LSMO/STO/SOS heterostructures show that the LSMO film properties are competitive with those directly grown on oxide substrates. X-ray magnetic circular dichroism measurements on Mn L2,3 edges show strong dichroic signal at room temperature, and angular-dependent in-plane magnetic properties by magneto-optical Kerr magnetometry reveal isotropic magnetic anisotropy. Suspended micro-bridges were thus finally fabricated by silicon micromachining, thus demonstrating the potential use of integrating LSMO magnetic layer on industrially compatible SOS substrates for the development of applicative MEMS devices.
The occurrence of oxygen-driven metal–insulator-transition (MIT) in SrNbO3 (SNO) thin films epitaxially grown on (110)-oriented DyScO3 has been reported. SNO films are fabricated by the pulsed laser deposition technique at different partial O2 pressure to vary the oxygen content and their structural, optical, and transport properties are probed. SNO unit cell has been found to shrink vertically as the oxygen content increases but keeping the epitaxial matching with the substrate. The results of Fourier-transform infra-red spectroscopy show that highly oxygenated SNO samples (i.e., grown at high oxygen pressure) show distinct optical conductivity behavior with respect to oxygen deficient films, hence demonstrating the insulating character of the formers with respect to those fabricated with lower pressure conditions. Tailoring the optical absorption and conductivity of strontium niobate epitaxial films across the MIT will favor novel applications of this material.
V2O3 has long been studied as a prototypical strongly correlated material. The difficulty in obtaining clean, well ordered surfaces, however, hindered the use of surface sensitive techniques to study its electronic structure. Here we show by means of X-ray diffraction and electrical transport that thin films prepared by pulsed laser deposition can reproduce the functionality of bulk V2O3. The same films, when transferred in-situ, show an excellent surface quality as indicated by scanning tunnelling microscopy and low energy electron diffraction, representing a viable approach to study the metal-insulator transition in V2O3 by means of angle-resolved photoemission spectroscopy. Combined, these two aspects pave the way for the use of V2O3 thin films in device-oriented heterostructures.
The understanding of the origin of a two-dimensional electron gas (2DEG) at the surface of anatase TiO2 remains a challenging issue. In particular, in TiO2 ultra-thin films, it is extremely difficult to distinguish intrinsic effects, due to the physics of the TiO2, from extrinsic effects, such as those arising from structural defects, dislocations, and the presence of competing phases at the film/substrate interface. It is, therefore, mandatory to unambiguously ascertain the structure of the TiO2/substrate interface. In this work, by combining high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), density functional theory calculations, and multislice image simulations, we have investigated the nature of strainless anatase TiO2 thin films grown on LaAlO3 substrate. In particular, the presence of oxygen vacancies in anatase TiO2 has been proved to stabilize the formation of an extra alloy layer, Ti2AlO4, by means of interface rearrangement. Our results, therefore, elucidate why the growth of anatase TiO2 directly on LaAlO3 substrate has required the deposition of a TiOx extra-layer to have a 2DEG established, thus confirming the absence of a critical thickness for the TiO2 to stabilize a 2DEG at its surface. These findings provide fundamental insights on the underlying formation mechanism of the 2DEG in TiO2/LAO hetero-interfaces to engineer the 2DEG formation in anatase TiO2 for tailored applications.
We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.
The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.
Single crystals of the hexagonal triangular lattice compound AgCrSe2 have been grown by chemical vapor transport. The crystals have been carefully characterized and studied by magnetic susceptibility, magnetization, specific heat, and thermal expansion. In addition, we used Cr-electron spin resonance and neutron diffraction to probe the Cr 3d3 magnetism microscopically. To obtain the electronic density of states, we employed x-ray absorption and resonant photoemission spectroscopy in combination with density functional theory calculations. Our studies evidence an anisotropic magnetic order below TN=32K. Susceptibility data in small fields of about 1 T reveal an antiferromagnetic (AFM) type of order for H⊥c, whereas for H∥c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H⊥c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+=5T, which is absent for H∥c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fanlike arrangement above H+. A fully ferromagnetically polarized state is obtained above the saturation field of H⊥S=23.7T at 2 K with a magnetization of Ms=2.8μB/Cr. For H∥c, M(H) monotonically increases and saturates at the same Ms value at H∥S=25.1T at 4.2 K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T∗=45K, which is a clear fingerprint of short range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possibly related to the noncentrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen-based delafossites, can be tuned by relatively small, experimentally accessible magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.
We investigated the relationship between ferromagnetism and metallicity in strained La0.67Ca0.33MnO3 films grown on lattice-mismatched NdGaO3 (001) by means of spectroscopic techniques directly sensitive to the ferromagnetic state, to the band structure, and to the chemical state of the atoms. In this system, the ferromagnetic metallic (FMM) phase spatially coexists with an insulating one in most of the phase diagram. First, the observation of an almost 100% spin polarization of the photoelectrons at the Fermi level in the fundamental state provides direct evidence of the half-metallicity of the FMM phase, a result that has been previously observed through direct probing of the valence band only on unstrained, phase-homogeneous La0.67Sr0.33MnO3. Second, the spin polarization results to be correlated with the occupancy at the Fermi level for all the investigated temperature regimes. These outcomes show that the half-metallic behavior predicted by a double-exchange model persists even in phase-separated manganites. Moreover, the correlation between metallicity and ferromagnetic alignment is confirmed by X-ray magnetic circular dichroism, a more bulk-sensitive technique, allowing one to explain transport properties in terms of the conduction through aligned FMM domains.
Probing the energy and spin electron properties of materials by means of photoemission spectroscopy gives insights into the low-energy phenomena of matter driven by spin orbit coupling or exchange interaction. The information that can be derived from complete photoelectron spectroscopy experiments, beyond E(k), is contained in the photoemission transition matrix elements that determine peak intensities. We present here a complete photoemission study of the spin-polarized bands of 2H−NbSe2, a material that presents a surface spin-texture. Circular dichroism in angular-resolved photoemission spectroscopy (CD-ARPES) data are compared with spin-polarized angular-resolved spectra (SARPES) as measured with linearly polarized radiation in a well-characterized experimental chirality, at selected photon energy values. CD-ARPES is due to a matrix element effect that depends strongly on photon energy and experimental geometry: we show that it cannot be used to infer intrinsic spin properties in 2H−NbSe2. On the other hand, SARPES data provide reliable direct information on the spin properties of the electron states. The results on 2H−NbSe2 are discussed, and general methodological conclusions are drawn on the best experimental approach to the determination of the spin texture of quantum materials.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
Quantum materials are central for the development of novel functional systems that are often based on interface specific phenomena. Fabricating controlled interfaces between quantum materials requires adopting a flexible growth technique capable to synthesize different materials within a single-run deposition process with high control of structure, stoichiometry, and termination. Among the various available thin film growth technologies, pulsed laser deposition (PLD) allows controlling the growth of diverse materials at the level of single atomic layers. In PLD the atomic species are supplied through an ablation process of a stoichiometric target either in form of polycrystalline powders or of a single crystal. No carrier gases are needed in the deposition process. The ablation process is compatible with a wide range of background pressure. We present results of thin-film growth by PLD obtained by using an Nd:YAG infrared pulsed laser source operating at its first harmonics. With respect to the traditional PLD systems—based on excimer KrF UV-lasers—optimal conditions for the growth of thin films and heterostructures are reached at large target-to-substrate distance. Merits and limitations of this approach for growing oxide and non-oxide thin films are discussed. The merits of an Nd:YAG laser to grow very high-quality thin films suggest the possibility of implementing compact in-situ setups e.g. integrated with analytical instrumentation under ultra-high vacuum conditions.
In this work, we investigate the effects of the V2O3 structural phase transition on the magnetic properties of an amorphous magnetic thin film of CoFeB in contact with it. V2O3 thin films are deposited epitaxially on sapphire substrates, reaching bulklike properties after few nm of growth. By means of temperature dependent Kerr effect characterizations, we prove that crossing the V2O3 structural phase transition induces reproducible and reversible changes to CoFeB magnetic properties, especially to its coercive field. By decreasing the oxide layer thickness, its effects on the magnetic layer decreases, while reducing the magnetic layer thickness maximizes it, with a maximum of 330% coercive field variation found between the two V2O3 structural phases. By simply tuning the temperature, this systematic study shows that the engineering of V2O3 structural transition induces large interfacial strain and thus strong magnetic property variations to an amorphous thin film, opening wide possibilities in implementing strain-driven control of the magnetic behavior without strict requirements on epitaxial coherence at the interface.
We explored the properties of the quasi-binary Bi2Se3-Bi2S3 system over a wide compositional range. X-ray diffraction analysis demonstrates that rhombohedral crystals can be synthesized within the solid solution interval 0-22 mol% Bi2S3, while at 33 mol% Bi2S3 only orthorhombic crystals are obtained. Core level photoemission spectroscopy reveals the presence of Bi3+, Se2- and S2- species and the absence of metallic species, thus indicating that S incorporation into Bi2Se3 proceeds prevalently through the substitution of Se with S. Spin- and angle-resolved photoemission spectroscopy shows that topological surface states develop on the surfaces of the Bi2Se3-ySy (y <= 0.66) rhombohedral crystals, in close analogy with the prototypical case of Bi2Se3, while the orthorhombic crystals with higher S content turn out to be trivial semiconductors. Our results connect unambiguously the phase diagram and electronic properties of the Bi2Se3-Bi2S3 system.
Research on ultrathin quantum materials requires full control of the growth and surface quality of the specimens in order to perform experiments on their atomic structure and electron states leading to ultimate analysis of their intrinsic properties. We report results on epitaxial FeSe thin films grown by pulsed laser deposition (PLD) on CaF2 (001) substrates as obtained by exploiting the advantages of an all-in-situ ultra-high vacuum (UHV) laboratory allowing for direct high-resolution surface analysis by scanning tunnelling microscopy (STM), synchrotron radiation X-ray photoelectron spectroscopy (XPS) and angle-resolved photoemission spectroscopy (ARPES) on fresh surfaces. FeSe PLD growth protocols were fine-tuned by optimizing target-to-substrate distance d and ablation frequency, atomically flat terraces with unit-cell step heights are obtained, overcoming the spiral morphology often observed by others. In-situ ARPES with linearly polarized horizontal and vertical radiation shows hole-like and electron-like pockets at the Γ and M points of the Fermi surface, consistent with previous observations on cleaved single crystal surfaces. The control achieved in growing quantum materials with volatile elements such as Se by in-situ PLD makes it possible to address the fine analysis of the surfaces by in-situ ARPES and XPS. The study opens wide avenues for the PLD based heterostructures as work-bench for the understanding of proximity-driven effects and for the development of prospective devices based on combinations of quantum materials.
Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden–Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden–Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden–Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.
The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites’ 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics.
We study the 2×2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe2 in the 2D limit.
Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n–x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.
Here, we present an integrated ultra-high vacuum apparatus—named MBE-Cluster —dedicated to the growth and in situ structural, spectroscopic, and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g., manganites, and deposition of the patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction, low-energy electron diffraction, Auger electron spectroscopy, x-ray photoemission spectroscopy, and azimuthal longitudinal magneto-optic Kerr effect. The temperature can be controlled in the range from 5 K to 580 K, with the possibility of application of magnetic fields H up to ±7 kOe and electric fields E for voltages up to ±500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator facility for time-resolved spectroscopy.
The electronic properties of strontium ruthenate SrRuO3perovskite oxide thin filmsare modified by epitaxial strain, as determined by growing on different substrates by pulsedlaser deposition. Temperature dependence of the transport properties indicates that tensilestrain deformation of the SrRuO3unit cell reduces the metallicity of the material as well as itsmetal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Rubuckling angle due to compressive strain is counterweighted by the increased overlap of theconduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting intoan increased MIT temperature, i.e., a more conducting material. In particular, in the more metallicsamples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of anextra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening,as observed in volume sensitive photoemission of the unstrained material.
Out-of-plane Ga2Se3 nanowires are grown by molecular beam epitaxy via Au-assisted heterovalent exchange reaction on GaAs substrates in the absence of Ga deposition. It is shown that at a suitable temperature around 560 degrees C the Audecorated GaAs substrate releases Ga atoms, which react with the incoming Se and feed the nanowire growth. The nanowire composition, crystal structure, and morphology are characterized by Raman spectroscopy and electron microscopy. The growth mechanism is investigated by X-ray photoelectron spectroscopy. We explore the growth parameter window and find an interesting effect of shortening of the nanowires after a certain maximum length. The nanowire growth is described within a diffusion transport model, which explains the nonmonotonic behavior of the nanowire length versus the growth parameters. Nanowire shortening is explained by the blocking of Ga supply from the GaAs substrate by thick, in-plane worm-like Ga2Se3 structures, which grow concomitantly with the nanowires, followed by backward diffusion of Ga atoms from the nanowires down to the substrate surface.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
The electronic properties of anatase titanium dioxide (TiO2) thin films epitaxially grown on LaAlO3 substrates are investigated by synchrotron-x-ray spectroscopy [x-ray absorption spectroscopy (XAS), x-ray photoemission spectroscopy (XPS), and angle-resolved photoemission spectroscopy (ARPES)] and infrared spectroscopy. The Ti3+ fraction in TiO2−x is varied either by changing the oxygen pressure during deposition or by postgrowth annealing in ultrahigh vacuum (UHV). Structural investigation of the TiO2 thin films provides evidence of highly uniform crystallographic order in both as-grown and in situ UHV-annealed samples. The increased amount of Ti3+ as a consequence of UHV annealing is calibrated by in situ XPS and XAS analysis. The as-grown TiO2 samples, with a low Ti3+ concentration, show distinct electronic properties with respect to the annealed films, namely, absorption in the midinfrared (MIR) region correlated with polaron formation, and another peak in the visible range at 1.6 eV correlated with the presence of localized defect states (DSs). With the increasing level of Ti3+ induced by the postannealing process, the MIR peak disappears, while the DS peak is redshifted to the near-infrared region at about 1.0 eV. These results indicate the possibility of tailoring the optical absorption of anatase TiO2 films from the visible to the near-infrared region.
Two-dimensional (2D) metallic states induced by oxygen vacancies (VOs) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of VO-induced states at the (001) surface of anatase TiO2, where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular O2: while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface VOs and remain localized at the surface, where they can promptly react with O2. In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with O2 is kinetically hindered on anatase TiO2 (001), thus making them much less sensitive to oxygen dosing.
We present the results of a photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES) study on high quality, epitaxial SrNbO3 thin films prepared in situ by pulsed laser deposition (PLD). We show that the Fermi surface is composed of three bands mainly due to t(2g) orbitals of Nb 4d, in analogy with the 3d-based perovskite systems. The bulk band dispersion for the conduction and valence states obtained by density functional theory (DFT) is generally consistent with the ARPES data. The small discrepancy in the bandwidth close to the Fermi level seems to result from the interplay of correlation effects and the presence of vacancies. The ARPES results are complemented by soft x-ray photoemission spectroscopy measurements in order to provide indications on the chemical states and the stoichiometry of the material.
Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV. This result has been obtained by seeding the HHG process with 230 fs pulses at 515 nm. The ultimate energy resolution achieved on a polycrystalline Au sample at 40 K is ∼22 meV at 16.9 eV. These parameters set a new benchmark for narrowband HHG sources and have been obtained by varying the repetition rate up to 200 kHz and, consequently, mitigating the space charge, operating with ≈3×107 electrons/s and ≈5×108 photons/s. By comparing the harmonics bandwidth and the ultimate energy resolution with a pulse duration of ∼105 fs (as retrieved from time-resolved experiments on bismuth selenide), we demonstrate a new route for ultrafast space-charge-free PES experiments on solids close to transform-limit conditions.
Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling.
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage.
We combine time-resolved pump-probe magneto-optical Kerr effect and photoelectron spectroscopy experiments supported by theoretical analysis to determine the relaxation dynamics of delocalized electrons in half-metallic ferromagnetic manganite La1−xSrxMnO3. We observe that the half-metallic character of La1−xSrxMnO3 determines the timescale of both the electronic phase transition and the quenching of magnetization, revealing a quantum isolation of the spin system in double-exchange ferromagnets extending up to hundreds of picoseconds. We demonstrate the use of time-resolved hard x-ray photoelectron spectroscopy as a unique tool to single out the evolution of strongly correlated electronic states across a second-order phase transition in a complex material.
We report on the reproducible surface topological electron states in Bi2Se3 topological insulator thin films when epitaxially grown by Pulsed Laser Deposition (PLD) on (0 0 1)-oriented SrTiO3 (STO) perovskite substrates. Bi2Se3 has been reproducibly grown with single (0 0 1)-orientation and low surface roughness as controlled by ex-situ X-ray diffraction and in situ scanning tunnel microscopy and low-energy electron diffraction. Finally, in situ synchrotron radiation angle-resolved photo-emission spectroscopy measurements show a single Dirac cone and Dirac point at eV located in the center of the Brillouin zone likewise found from exfoliated single-crystals. These results demonstrate that the topological surface electron properties of PLD-grown Bi2Se3 thin films grown on (0 0 1)-oriented STO substrates open new perspectives for applications of multi-layered materials based on oxide perovskites.
Converse magnetoelectric coupling in artificial multiferroics is generally modeled through three possible mechanisms: charge transfer, strain mediated effects or ion migration. Here the role played by electrically controlled morphological modifications on the ferromagnetic response of a multiferroic heterostructure, specifically FexMn1−x ferromagnetic films on piezoferroelectric PMN‐PT [001] substrates, is discussed. The substrates present, in correspondence to electrical switching, fully reversible morphological changes at the surface, to which correspond reproducible modifications of the ferromagnetic response of the FexMn1−x films. Topographic analysis by atomic force microscopy shows the formation of surface cracks (up to 100 nm in height) upon application of a sufficiently high positive electric field (up to 6 kV cm−1). The cracks disappear after application of negative electric field of the same magnitude. Correspondingly, in operando X‐ray magnetic circular dichroic spectroscopy at Fe edge in FexMn1−x layers and micro‐MOKE measurements show local variations in the intensity of the dichroic signal and in the magnetic anisotropy as a function of the electrically driven morphological state. This morphologic parameter, rarely explored in literature, directly affects the ferromagnetic response of the system. Its proof of electrically reversible modification of the magnetic response adds a new possibility in the design of electrically controlled magnetic devices.
The band inversions that generate the topologically non-trivial band gaps of topological insulators and the isolated Dirac touching points of three-dimensional Dirac semimetals generally arise from the crossings of electronic states derived from different orbital manifolds. Recently, the concept of single orbital-manifold band inversions occurring along high-symmetry lines has been demonstrated, stabilising multiple bulk and surface Dirac fermions. Here, we discuss the underlying ingredients necessary to achieve such phases, and discuss their existence within the family of transition metal dichalcogenides. We show how their three-dimensional band structures naturally produce only small k z projected band gaps, and demonstrate how these play a significant role in shaping the surface electronic structure of these materials. We demonstrate, through spin- and angle-resolved photoemission and density functional theory calculations, how the surface electronic structures of the group-X TMDs PtSe2 and PdTe2 are host to up to five distinct surface states, each with complex band dispersions and spin textures. Finally, we discuss how the origin of several recently-realised instances of topological phenomena in systems outside of the TMDs, including the iron-based superconductors, can be understood as a consequence of the same underlying mechanism driving k z -mediated band inversions in the TMDs.
By performing density functional theory and Green's functions calculations, complemented by x-ray photoemission spectroscopy, we investigate the electronic structure of Fe/GeTe(111), a prototypical ferromagnetic/Rashba-ferroelectric interface. We reveal that such a system exhibits several intriguing properties resulting from the complex interplay of exchange interaction, electric polarization, and spin-orbit coupling. Despite a rather strong interfacial hybridization between Fe and GeTe bands, resulting in a complete suppression of the surface states of the latter, the bulk Rashba bands are hardly altered by the ferromagnetic overlayer. This could have a deep impact on spin-dependent phenomena observed at this interface, such as spin-to-charge interconversion, which are likely to involve bulk rather than surface Rashba states.
This thesis contains a selection of the results on the shallow electron states of quantum materials that I obtained as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano. I carried out my doctoral research activity mostly at the TASC-IOM CNR laboratory, in the framework of the NFFA and APE-beamline facilities (Elettra Sincrotrone Trieste), as well in dedicated sessions at the I2; beamline of the Diamond light source, Harwell Campus, UK. To access the electronic properties of materials I specialised myself in photoemission spectroscopy techniques. High quality samples are a prerequisite for any attempt to study quantum materials so that a major effort in my PhD project has been to master the growth of novel quantum materials by means of Pulsed Laser Deposition (PLD). Given that the PLD is integrated in the suite of UHV facilities attached in-situ to the APE beamline, I directly characterised the electronic properties of the PLD grown samples exploiting both the spectroscopic techniques available at the beamline (ARPES, X-ray photoemission and absorption spectroscopies: XPS and XAS), either ex-situ structural characterisation tools (X-ray diffraction –XRD– and X-ray reflectivity, XRR).
Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of a system, it is fundamental to set a defined anisotropy to the system. Here, we investigate half-metallic La0.67Sr0.33MnO3 thin films by means of vectorial Magneto-Optical Kerr Magnetometry and found that they exhibit pure biaxial magnetic anisotropy at room temperature if grown onto a MgO (001) substrate with a thin SrTiO3 buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways and critical fields (coercivity and switching) discloses the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows fourfold symmetry at any temperature.
The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate,
IrO2, is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of IrO2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor
PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
Controlling magnetism by using electric fields is a goal of research towards novel spintronic devices and future nanoelectronics. For this reason, multiferroic heterostructures attract much interest. Here we provide experimental evidence, and supporting density functional theory analysis, of a transition in La0.65Sr0.35MnO3 thin film to a stable ferromagnetic phase, that is induced by the structural and strain properties of the ferroelectric BaTiO3 (BTO) substrate, which can be modified by applying external electric fields. X-ray magnetic circular dichroism measurements on Mn L edges with a synchrotron radiation show, in fact, two magnetic transitions as a function of temperature that correspond to structural changes of the BTO substrate. We also show that ferromagnetism, absent in the pristine condition at room temperature, can be established by electrically switching the BTO ferroelectric domains in the out-of-plane direction. The present results confirm that electrically induced strain can be exploited to control magnetism in multiferroic oxide heterostructures.
The superconducting properties of Sr1–xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1–xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
Here we report a giant, completely reversible magneto-electric coupling of 100 nm polycrystalline Co layer in contact with ZnO nanorods. When the sample is under an applied bias of ± 2 V, the Co magnetic coercivity is reduced by a factor 5 from the un-poled case, with additionally a reduction of total magnetic moment in Co. Taking into account the chemical properties of ZnO nanorods measured by x-rays absorption near edge spectroscopy under bias, we conclude that these macroscopic effects on the magnetic response of the Co layer are due to the microstructure and the strong strain-driven magneto-electric coupling induced by the ZnO nanorods, whose nanostructuration maximizes the piezoelectric response under bias.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
In this work, we studied the influence of the buffer layer composition on the IrMn thickness threshold for the onset of exchange bias in IrMn/Co bilayers. By means of magnetometry, x-ray absorption and x-ray photoelectron spectroscopy, we investigated the magnetic and chemical properties of the stacks. We demonstrated a higher diffusion of Mn through the Co layer in the case of a Cu buffer layer. This is consistent with the observation of larger IrMn thickness threshold for the onset of exchange bias.
The knowledge of the picosecond dynamics of the energy level alignment between donor and acceptor materials in organic photovoltaic devices under working conditions is a challenge for fundamental material research. We measured by means of time-resolved Resonant X-ray Photoemission Spectroscopy (RPES) the energy level alignment in ZnPc/C60 films. We employed 800 nm femtosecond laser pulses to pump the system simulating sunlight excitation and X-rays from the synchrotron as a probe. We measured changes in the valence bands due to pump induced modifications of the interface dipole. Our measurements prove the feasibility of time-resolved RPES with high repetition rate sources.
In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1−xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1−xSrxMnO3, for fully restoring bulk properties.
By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe2, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe2 around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
Complete photoemission experiments, enabling measurement of the full quantum set of the photoelectron final state, are in high demand for studying materials and nanostructures whose properties are determined by strong electron and spin correlations. Here the implementation of the new spin polarimeter VESPA (Very Efficient Spin Polarization Analysis) at the APE-NFFA beamline at Elettra is reported, which is based on the exchange coupling between the photoelectron spin and a ferromagnetic surface in a reflectometry setup. The system was designed to be integrated with a dedicated Scienta-Omicron DA30 electron energy analyzer allowing for two simultaneous reflectometry measurements, along perpendicular axes, that, after magnetization switching of the two targets, allow the three-dimensional vectorial reconstruction of the spin polarization to be performed while operating the DA30 in high-resolution mode. VESPA represents the very first installation for spin-resolved ARPES (SPARPES) at the Elettra synchrotron in Trieste, and is being heavily exploited by SPARPES users since autumn 2015.
We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.
We report on epitaxial growth of Bi2Se3topological insulator thin films by Pulsed Laser Deposition(PLD). X-ray diffraction investigation confirms that Bi2Se3with a single (001)-orientation can beobtained on several substrates in a narrow (i.e., 20°C) range of deposition temperatures and at highdeposition pressure (i.e., 0.1 mbar). However, only films grown on (001)-Al2O3substrates show analmost-unique in-plane orientation.In-situspin-resolved angular resolved photoemission spectros-copy experiments, performed at the NFFA-APE facility of IOM-CNR and Elettra (Trieste), show asingle Dirac cone with the Dirac point atEB0:38 eV located in the center of the Brillouin zoneand the spin polarization of the topological surface states. These results demonstrate that the topolog-ical surface state can be obtained in PLD-grown Bi2Se3thin films.
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano that has been carried out, starting in November 4236, mostly at the Laboratorio TASC of IOM-CNR3 in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures4, in the framework of the NFFA and APE-beamline facilites5, as well as by accessing international large scale infrastructures and laboratories. The activity has addressed the development of experimental methodologies and novel instrumentation oriented to the study of the dynamical properties of highly correlated materials after high energy excitation. The science programme has been carried out by exploiting ultrafast femtosecond probes from the optical regime (Ti-Sa lasers, fibre laser oscillators) to the extreme UV-soft X rays at FERMI, to the picosecond hard X-rays from the SPring-: and Diamond synchrotron radiation source. The sample synthesis of correlated oxides and its characterization has been performed within the NFFA facility and APE-group collaboration in Trieste as well as the design and construction of the all new laser High Harmonic Generation beam line NFFA-SPRINT and its end station for time resolved vectorial electron spin polarimetry.
In this work the experimental uncertainties concerning electron spin polarization (SP) under various realistic measurement conditions are theoretically derived. The accuracy of the evaluation of the SP of the photoelectron current is analysed as a function of the detector parameters and specifications, as well as of the characteristics of the photoexcitation sources. In particular, the different behaviour of single counter or twin counter detectors when the intensity fluctuations of the source are considered have been addressed, leading to a new definition of the SP detector performance. The widely used parameter called the figure of merit is shown to be inadequate for describing the efficiency of SP polarimeters, especially when they are operated with time-structured excitation sources such as free-electron lasers. Numerical simulations have been performed and yield strong implications in the choice of the detecting instruments in spin-polarization experiments, that are constrained in a limited measurement time. Our results are therefore applied to the characteristics of a wide set of state-of-the-art spectroscopy facilities all over the world, and an efficiency diagram for SP experiments is derived. These results also define new mathematical instruments for handling the correct statistics of SP measurements in the presence of source intensity fluctuations.
The recent discovery of hidden spin polarization emerging in bulk electronic states of specific nonmagnetic crystals is a fascinating phenomenon, though hardly explored yet. Here, we study from a theoretical perspective nonmagnetic
BaNiS2, recently suggested to exhibit a giant Rashba-like spin-orbit splitting of the bulk bands, despite the absence of heavy elements. We employ density functional theory and Green's functions calculations to reveal the exact spin textures of both bulk and surface. We predict unambiguous signatures of spin-polarized electronic states at the surface, which reflect the bulk Rashba splitting and which could be experimentally measured with sufficient resolution: this would constitute a clear report of a bulk-Rashba-induced spin splitting at the surface of centrosymmetric crystals.
ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique.
The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe1-xGax) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.
We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.
We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO3 (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.
Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.
Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.
This thesis reports on the construction and commissioning tests of the novel experimental set-up needed for a long term research project, named ULTRASPIN, aiming at establishing time resolved spin-resolved photoemission measurements with ultra-short (10−14 s) photon pulses from Free Electron Laser beamlines or from table-top UV/Soft-X beamlines.
The ULTRASPIN project started in the summer 2013, building on competences and instrumentation in part available from the APE-beamline group of IOM-CNR at Elettra, and with the partial support of an European contract (EXSTASY-EXperimental STation for the Analysis of the Spin Dynamics, Grant agreement N.PIIF-GA-2012-326641) and related fellowship of a world-expert of Mott scattering.
I have been involved from the beginning in the final design, in the construction and commissioning of a novel stray-field free UHV apparatus for preparing and hosting atomically clean surfaces and for measuring the spin-polarization of the photo-emitted electrons with “single pulse” sensitivity down to the 10−14 s time scale, as well as in the standard high frequency spectroscopy mode. In the commissioning phase I have participated to test experiments on ULTRASPIN as well as to relevant experiments conducted in other apparatuses.