We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the 𝜋𝜋* Dirac cones at the K point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
4Hb-TaS2 is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS2 and 1T-TaS2. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS2 fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS2 compared to the coupling in 2H-TaS2 that results in a pronounced spin-valley locking within 4Hb-TaS2.
The fabrication and integration of high-quality structures of Yttrium Iron Garnet (YIG) is critical for magnonics. Films with excellent properties are obtained only on single crystal Gadolinium Gallium Garnet (GGG) substrates using high-temperature processes. The subsequent realization of magnonic structures via lithography and etching is not straightforward as it requires a tight control of the edge roughness, to avoid magnon scattering, and planarization in case of multilayer devices. In this work a different approach is described based on local laser annealing of amorphous YIG films, avoiding the need for subjecting the entire sample to high thermal budgets and for physical etching. Starting from amorphous and paramagnetic YIG films grown by pulsed laser deposition at room temperature on GGG, a 405 nm laser is used for patterning arbitrary shaped ferrimagnetic structures by local crystallization. In thick films (160 nm) the laser induced surface corrugation prevents the propagation of spin-wave modes in patterned conduits. For thinner films (80 nm) coherent propagation is observed in 1.2 µm wide conduits displaying an attenuation length of 5 µm that is compatible with a damping coefficient of ≈5 × 10−3. Possible routes to achieve damping coefficients compatible with state-of-the art epitaxial YIG films are discussed.
AgCrSe2 exhibits remarkably high ionic conduction, an inversion symmetry-breaking structural transition, and is host to complex non-colinear magnetic orders. Despite its attractive physical and chemical properties and its potential for technological applications, studies of this compound to date are focused almost exclusively on bulk samples. Here, we report the growth of AgCrSe2 thin films via molecular beam epitaxy. Single-orientated epitaxial growth was confirmed by x-ray diffraction, while resonant photoemission spectroscopy measurements indicate a consistent electronic structure as compared to bulk single crystals. We further demonstrate significant flexibility of the grain morphology and cation stoichiometry of this compound via control of the growth parameters, paving the way for the targeted engineering of the electronic and chemical properties of AgCrSe2 in thin-film form.
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.
Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2.
It is well-known that all the phases of the manufacturing influence the extraordinary aesthetic and acoustic features of Stradivari’s instruments. However, these masterpieces still keep some of their secrets hidden by the lack of documentary evidence. In particular, there is not a general consensus on the use of a protein-based ground coating directly spread on the wood surface by the Cremonese Master. The present work demonstrates that infrared scattering-type scanning near-fields optical microscopy (s-SNOM) may provide unprecedented information on very complex cross-sectioned microsamples collected from two of Stradivari’s violins, nanoresolved chemical sensitivity being the turning point for detecting minute traces of a specific compound, namely proteins, hidden by the matrix when macro or micro sampling approaches are exploited. This nanoresolved chemical-sensitive technique contributed new and robust evidence to the long-debated question about the use of proteinaceous materials by Stradivari.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials MX2 (M=V, Mn, Ni and X=Cl, Br, I). We first show that consideration of general properties such as filling and hybridization enables to formulate the trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3d transition metal ions do not strongly contribute to the anisotropic component of the intersite exchange interaction. Consequently, we find that the corresponding SOC matrix elements differ significantly from the atomic limit. In the next step and by using two ab initio based complementary approaches, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.
Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models
We grew Sr1-xLaxCuO2 thin films and SrCuO2/Sr0.9La0.1CuO2/SrCuO2 trilayers by reflection high-energy diffraction-calibrated layer-by-layer molecular beam epitaxy, to study their electrical transport properties as a function of the doping and thickness of the central Sr0.9La0.1CuO2 layer. For the trilayer samples, as already observed in underdoped SLCO films, the electrical resistivity versus temperature curves as a function of the central layer thickness show, for thicknesses thinner than 20 unit cells, sudden upturns in the low temperature range with the possibility for identifying, in the normal state, the T* and a T** temperatures, respectively, separating high-temperature linear behavior and low-temperature quadratic dependence. By plotting the T* and T** values as a function of TConset for both the thin films and the trilayers, the data fall on the same curves. This result suggests that, for the investigated trilayers, the superconducting critical temperature is the important parameter able to describe the normal state properties and that, in the limit of very thin central layers, such properties are mainly influenced by the modification of the energy band structure and not by interface-related disorder.
Multiferroic materials have attracted wide interest because of their exceptional static1,2,3 and dynamical4,5,6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.
Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX2 (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl2 single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.
Single crystals of the hexagonal triangular lattice compound AgCrSe2 have been grown by chemical vapor transport. The crystals have been carefully characterized and studied by magnetic susceptibility, magnetization, specific heat, and thermal expansion. In addition, we used Cr-electron spin resonance and neutron diffraction to probe the Cr 3d3 magnetism microscopically. To obtain the electronic density of states, we employed x-ray absorption and resonant photoemission spectroscopy in combination with density functional theory calculations. Our studies evidence an anisotropic magnetic order below TN=32K. Susceptibility data in small fields of about 1 T reveal an antiferromagnetic (AFM) type of order for H⊥c, whereas for H∥c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H⊥c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+=5T, which is absent for H∥c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fanlike arrangement above H+. A fully ferromagnetically polarized state is obtained above the saturation field of H⊥S=23.7T at 2 K with a magnetization of Ms=2.8μB/Cr. For H∥c, M(H) monotonically increases and saturates at the same Ms value at H∥S=25.1T at 4.2 K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T∗=45K, which is a clear fingerprint of short range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possibly related to the noncentrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen-based delafossites, can be tuned by relatively small, experimentally accessible magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.
Composite multiferroics containing ferroelectric and ferromagnetic components often have much larger magnetoelectric coupling compared to their single-phase counterparts. Doped or alloyed HfO2-based ferroelectrics may serve as a promising component in composite multiferroic structures potentially feasible for technological applications. Recently, a strong charge-mediated magnetoelectric coupling at the Ni/HfO2 interface has been predicted using density functional theory calculations. Here, we report on the experimental evidence of such magnetoelectric coupling at the Ni/Hf0.5Zr0.5O2(HZO) interface. Using a combination of operando XAS/XMCD and HAXPES/MCDAD techniques, we probe element-selectively the local magnetic properties at the Ni/HZO interface in functional Au/Co/Ni/HZO/W capacitors and demonstrate clear evidence of the ferroelectric polarization effect on the magnetic response of a nanometer-thick Ni marker layer. The observed magnetoelectric effect and the electronic band lineup of the Ni/HZO interface are interpreted based on the results of our theoretical modeling. It elucidates the critical role of an ultrathin NiO interlayer, which controls the sign of the magnetoelectric effect as well as provides a realistic band offset at the Ni/HZO interface, in agreement with the experiment. Our results hold promise for the use of ferroelectric HfO2-based composite multiferroics for the design of multifunctional devices compatible with modern semiconductor technology.
The magnetic properties of the two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of t2g orbital splitting and carried out in comparison with the CrI3 prototypical case, where the splitting is negligible. In VI3 bilayers, the empty a1g state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different VI3 stackings (labeled AB and AB′), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the AB′ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
Chirality and magnetism of molecules are two properties that in the last years raised notable interest for the development of novel molecular devices. Chiral helicenes combine these functionalities, and their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel assembling strategy to deposit a sub‐monolayer of enantiopure thia[4]helicene radical cations on a pre‐functionalized Au(111) substrate permitting the persistence of both the paramagnetic character and chirality of these molecules at the nanoscale. In‐house characterizations demonstrated the retention of the chemical and paramagnetic properties after the deposition process. Furthermore, synchrotron‐based X‐ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden–Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden–Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden–Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.
Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at high doping level up to x=0.4, thanks to the good lat-tice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at macroscopic and atomic level, respectively. Therefore, in epitaxial thin films the homogeneous doping can be obtained even with high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by x-ray photoemission and x-ray absorption show the O 2p band shift towards the Fermi level which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x=0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of high doping level x=0.4.
We study the 2×2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe2 in the 2D limit.
Two-dimensional (2D) alloys represent a versatile platform that extends the properties of atomically thin transition-metal dichalcogenides. Here, using molecular beam epitaxy, we investigate the growth of 2D vanadium-molybdenum diselenide alloys, VxMo1–xSe2, on highly oriented pyrolytic graphite and unveil their structural, chemical, and electronic integrities via measurements by scanning tunneling microscopy/spectroscopy, synchrotron X-ray photoemission, and X-ray absorption spectroscopy (XAS). Essentially, we found a critical value of x = ∼0.44, below which phase separation occurs and above which a homogeneous metallic phase is favored. Another observation is an effective increase in the density of mirror twin boundaries of constituting MoSe2 in the low V concentration regime (x ≤ 0.05). Density functional theory calculations support our experimental results on the thermal stability of 2D VxMo1–xSe2 alloys and suggest an H phase of the homogeneous alloys with alternating parallel V and Mo strips randomly in-plane stacked. Element-specific XAS of the 2D alloys, which clearly indicates quenched atomic multiplets similar to the case of 2H-VSe2, provides strong evidence for the H phase of the 2D alloys. This work provides a comprehensive understanding of the thermal stability, chemical state, and electronic structure of 2D VxMo1–xSe2 alloys, useful for the future design of 2D electronic devices.
Out-of-plane Ga2Se3 nanowires are grown by molecular beam epitaxy via Au-assisted heterovalent exchange reaction on GaAs substrates in the absence of Ga deposition. It is shown that at a suitable temperature around 560 degrees C the Audecorated GaAs substrate releases Ga atoms, which react with the incoming Se and feed the nanowire growth. The nanowire composition, crystal structure, and morphology are characterized by Raman spectroscopy and electron microscopy. The growth mechanism is investigated by X-ray photoelectron spectroscopy. We explore the growth parameter window and find an interesting effect of shortening of the nanowires after a certain maximum length. The nanowire growth is described within a diffusion transport model, which explains the nonmonotonic behavior of the nanowire length versus the growth parameters. Nanowire shortening is explained by the blocking of Ga supply from the GaAs substrate by thick, in-plane worm-like Ga2Se3 structures, which grow concomitantly with the nanowires, followed by backward diffusion of Ga atoms from the nanowires down to the substrate surface.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
Bulk PtSn4 has recently attracted the interest of the scientific community for the presence of electronic states exhibiting Dirac node arcs, enabling possible applications in nanoelectronics. Here, by means of surface-science experiments and density functional theory, we assess its suitability for catalysis by studying the chemical reactivity of the (0 1 0)-oriented PtSn4 surface toward CO, H2O, O2 molecules at room temperature and, moreover, its stability in air. We demonstrate that the catalytic activity of PtSn4 is determined by the composition of the outermost atomic layer. Specifically, we find that the surface termination for PtSn4 crystals cleaved in vacuum is an atomic Sn layer, which is totally free from any CO poisoning. In oxygen-rich environment, as well as in ambient atmosphere, the surface termination is a SnOx skin including SnO and SnO2 in comparable amount. However, valence-band states, including those forming Dirac node arcs, are only slightly affected by surface modifications. The astonishingly beneficial influence of surface oxidation on catalytic activity has been demonstrated by electrocatalytic tests evidencing a reduction of the Tafel slope, from 442 down to 86 mV dec−1, whose origin has been explained by our theoretical model. The use of surface-science tools to tune the chemical reactivity of PtSn4 opens the way toward its effective use in catalysis, especially for hydrogen evolution reaction and oxygen evolution reaction.
The local atomic structure and the magnetic response of Co films intercalated between Graphene and Ir(111) were investigated combining polarized X-ray Absorption Spectroscopy at the Co K edge with Magneto-Optic Kerr Effect. The structural and magnetic evolution upon a 500 °C annealing was evaluated as a function of the film thickness. After the thermal treatment, our thick film (10 monolayers) presented a lower perpendicular magnetic anisotropy (PMA) as well as a reduced average structural disorder. On the other hand, in our thin film (5 monolayers), the annealing enhanced the perpendicular magnetic response and induced a local anisotropy by stretching the Co-Co bonds in the film plane and compressing those outside the plane. Our finding emphasizes the close relationship between the local structure of Co within the film and its magnetic properties.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.
Palladium ditelluride (PdTe2) is a novel transition‐metal dichalcogenide exhibiting type‐II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface‐science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter‐wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ≈+12 kJ mol−1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub‐nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2‐based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2‐based millimeter‐wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2‐based high‐temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
Magnetism in monolayer (ML) VSe2 has attracted broad interest in spintronics, while existing reports have not reached consensus. Using element-specific X-ray magnetic circular dichroism, a magnetic transition in ML VSe2 has been demonstrated at the contamination-free interface between Co and VSe2. Through interfacial hybridization with a Co atomic overlayer, a magnetic moment of about 0.4 μB per V atom in ML VSe2 is revealed, approaching values predicted by previous theoretical calculations. Promotion of the ferromagnetism in ML VSe2 is accompanied by its antiferromagnetic coupling to Co and a reduction in the spin moment of Co. In comparison to the absence of this interface-induced ferromagnetism at the Fe/ML MoSe2 interface, these findings at the Co/ML VSe2 interface provide clear proof that the ML VSe2, initially with magnetic disorder, is on the verge of magnetic transition.
Monolayer VSe2, featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition‐metal dichalcogenides (2D‐TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X‐ray and angle‐resolved photoemission, and X‐ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T‐phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular‐beam epitaxy. Element‐specific X‐ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long‐range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic‐scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D‐TMDs in the search for exotic low‐dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.
Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were produced via hot-injection from metal chloride precursors. A systematic investigation of the influence of synthesis conditions on composition, size and microstructure of CZTS NCs is presented. The results show that the solvent amount (oleylamine) is a key parameter in the synthesis of this quaternary chalcogenide: a low solvent content leads to CZTS NCs with a prominent kesterite phase with the desired composition for use as absorber material in thin film photovoltaic cells. It is also observed that lowering the injection temperature (250 °C) favours formation of CZTS NCs in the wurtzite phase. The effect of different high temperature thermal treatments on the grain growth is also shown: large crystals are obtained with annealing in inert atmosphere, whereas nanocrystalline films are obtained introducing sulphur vapour during the heat treatment. A correlation between the grain dimension and the carbonaceous residues in the final films is investigated. It is shown that the grain growth is hindered by organic residues, amount and nature of which depend on the heat treatment atmosphere. In fact, oleylamine is removed by a complex pyrolytic process, which is affected by the presence of sulphur vapour. The latter favours the stability of oleylamine residuals against its non-oxidative release.
The band inversions that generate the topologically non-trivial band gaps of topological insulators and the isolated Dirac touching points of three-dimensional Dirac semimetals generally arise from the crossings of electronic states derived from different orbital manifolds. Recently, the concept of single orbital-manifold band inversions occurring along high-symmetry lines has been demonstrated, stabilising multiple bulk and surface Dirac fermions. Here, we discuss the underlying ingredients necessary to achieve such phases, and discuss their existence within the family of transition metal dichalcogenides. We show how their three-dimensional band structures naturally produce only small k z projected band gaps, and demonstrate how these play a significant role in shaping the surface electronic structure of these materials. We demonstrate, through spin- and angle-resolved photoemission and density functional theory calculations, how the surface electronic structures of the group-X TMDs PtSe2 and PdTe2 are host to up to five distinct surface states, each with complex band dispersions and spin textures. Finally, we discuss how the origin of several recently-realised instances of topological phenomena in systems outside of the TMDs, including the iron-based superconductors, can be understood as a consequence of the same underlying mechanism driving k z -mediated band inversions in the TMDs.
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface.
In order to enable the use of the prototypical 2D‐layered MoS2 for spintronics, its integration with ferromagnetic layers is mandatory. By employing interface‐sensitive 57Fe conversion electron Mössbauer spectroscopy (CEMS), hard X‐ray photoelectron spectroscopy (HAXPES), and transmission electron microscopy (TEM), the chemical, structural, and magnetic properties of the Fe/2D‐MoS2 interface are investigated. CEMS shows that out of the first 1 nm of Fe in direct contact with 2D‐MoS2, about half of the Fe atoms keeps the un‐perturbed Fe local environment, partly in regions where the original 2D‐layered structure of MoS2 is preserved as shown by TEM. The remaining reacting Fe atoms exclusively bond with Mo, with the majority of them being characterized by a ferromagnetic environment and the rest coordinating in a paramagnetic Fe‐Mo configuration. The preferential Fe bonding with Mo is corroborated by HAXPES analysis. The results provide detailed insight into the link between the bonding configuration and the interfacial magnetism at the Fe/2D‐MoS2 heterojunction.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor
PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/
BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the
BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.
The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the insertion of a two-dimensional magnetic oxide layer at the interface with the aim of both increasing the reproducibility of the interface preparation and offering a way for a further fine control over the electronic and magnetic properties. We have inserted a two-dimensional Cr4O5 layer at the C60/Fe(001) interface and have characterized the corresponding morphological, electronic, and magnetic properties. Scanning tunneling microscopy and electron diffraction show that the film grows well-ordered both in the monolayer and multilayer regimes. Electron spectroscopies confirm that hybridization of the electronic states occurs at the interface. Finally, magnetic dichroism in X-ray absorption shows an unprecedented spin-polarization of the hybridized fullerene states. The latter result is discussed also in light of an ab initio theoretical analysis.
The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films. Satellite peaks in O1s and modifications at the O K-edge allow the determination of the presence of H embedded in ZnO and the very low concentration of Zn vacancies and O interstitials in undoped ZnO. Contributions coming from substitutional and (above the solubility limit) interstitial Al atoms have been clearly identified and have been related to changes in the oxide stoichiometry and increased oxygen coordination, together with small lattice distortions. In this way defects and doping in oxide films can be controlled, in order to tune their properties and improve their performances.
The role of trivalent rare-earth dopants on the cerium oxidation state has been systematically studied by in situ photoemission spectroscopy with synchrotron radiation for 10 mol % rare-earth doped epitaxial ceria films. It was found that dopant rare-earths with smaller ionic radius foster the formation of Ce3+ by releasing the stress strength induced by the cation substitution. With a decrease of the dopant ionic radius from La3+ to Yb3+, the out-of-plane axis parameter of the crystal lattice decreases without introducing macroscopic defects. The high crystal quality of our films allowed us to comparatively study both the ionic conductivity and surface reactivity ruling out the influence of structural defects. The measured increase in the activation energy of films and their enhanced surface reactivity can be explained in terms of the dopant ionic radius effects on the Ce4+ → Ce3+ reduction as a result of lattice relaxation. Such findings open new perspectives in designing ceria-based materials with tailored properties by choosing suitable cation substitution.
Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the “bulk” ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange “surface” reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.