The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.
We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the 𝜋𝜋* Dirac cones at the K point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
4Hb-TaS2 is a superconductor that exhibits unique characteristics such as time-reversal symmetry breaking, hidden magnetic memory, and topological edge modes. It is a naturally occurring heterostructure comprising of alternating layers of 1H-TaS2 and 1T-TaS2. The former is a well-known superconductor, while the latter is a correlated insulator with a possible non- trivial magnetic ground state. In this study, we use angle resolved photoemission spectroscopy to investigate the normal state electronic structure of this unconventional superconductor. Our findings reveal that the band structure of 4Hb-TaS2 fundamentally differs from that of its constituent materials. Specifically, we observe a significant charge transfer from the 1T layers to the 1H layers that drives the 1T layers away from half-filling. In addition, we find a substantial reduction in inter-layer coupling in 4Hb-TaS2 compared to the coupling in 2H-TaS2 that results in a pronounced spin-valley locking within 4Hb-TaS2.
The doping of metal oxides is an interesting route to increase catalyst activity and lower activation temperatures in H2 dissociation to replace Pt in catalysts for electrochemical devices. In this process, the roles of both the matrix and dopant cations are fundamental to understanding and designing more efficient catalysts. In this work, we have investigated the reduction process in pure and doped CeO2 films. We followed the oxidation states of Ce and dopants (Cu and Fe) during H2 exposure at ambient pressure by combining X-ray absorption spectroscopy and gas chromatography on 5 nm films in the temperature range of 300–620 K. We have observed that Cu doping (at concentrations of 5 and 14 at. %) promotes the ceria reduction, while the addition of Fe seems to have a limited impact on the oxide chemical reactivity only at low temperatures. Moreover, thanks to the chemical sensitivity of operando X-ray absorption spectroscopy, we were able to follow simultaneously the evolution of Ce and Cu oxidation states during the reaction, which has permitted to identify two distinct reduction processes taking place above and below 500 K. These measurements show that at low temperatures, the H2 dissociation takes place at the Cu1+ sites, thus explaining the higher reactivity of the Cu-doped samples. The described mechanism can help in the design of Pt-free catalysts with enhanced performances.
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy–momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.
Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2.
We present CoTe2 as a type-II Dirac semimetal supporting Lorentz-symmetry violating Dirac fermions in the vicinity of the Fermi energy. By combining first-principles ab initio calculations with experimental angle-resolved photoemission spectroscopy results, we show CoTe2 hosts a pair of type-II Dirac fermions around 90 meV above the Fermi energy. In addition to the bulk Dirac fermions, we find several topological band inversions in bulk CoTe2, which gives rise to a ladder of spin-polarized surface states over a wide range of energies. In contrast to the surface states which typically display Rashba-type in-plane spin splitting, we find that CoTe2 hosts interesting out-of-plane spin polarization as well. Our work establishes CoTe2 as a potential candidate for the exploration of Dirac fermiology and applications in spintronic devices, infrared plasmonics, and ultrafast optoelectronics.
It is well-known that all the phases of the manufacturing influence the extraordinary aesthetic and acoustic features of Stradivari’s instruments. However, these masterpieces still keep some of their secrets hidden by the lack of documentary evidence. In particular, there is not a general consensus on the use of a protein-based ground coating directly spread on the wood surface by the Cremonese Master. The present work demonstrates that infrared scattering-type scanning near-fields optical microscopy (s-SNOM) may provide unprecedented information on very complex cross-sectioned microsamples collected from two of Stradivari’s violins, nanoresolved chemical sensitivity being the turning point for detecting minute traces of a specific compound, namely proteins, hidden by the matrix when macro or micro sampling approaches are exploited. This nanoresolved chemical-sensitive technique contributed new and robust evidence to the long-debated question about the use of proteinaceous materials by Stradivari.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials MX2 (M=V, Mn, Ni and X=Cl, Br, I). We first show that consideration of general properties such as filling and hybridization enables to formulate the trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3d transition metal ions do not strongly contribute to the anisotropic component of the intersite exchange interaction. Consequently, we find that the corresponding SOC matrix elements differ significantly from the atomic limit. In the next step and by using two ab initio based complementary approaches, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.
Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models
Multiferroic materials have attracted wide interest because of their exceptional static1,2,3 and dynamical4,5,6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.
Here, we discuss the key features of electrocatalysis with mitrofanovite (Pt3Te4), a recently discovered mineral with superb performances in hydrogen evolution reaction. Mitrofanovite is a layered topological metal with spin-polarized topological surface states with potential applications for spintronics. However, mitrofanovite is also an exceptional platform for electrocatalysis, with costs of the electrodes suppressed by 47% owing to the partial replacement of Pt with Te. Remarkably, the Tafel slope in nanostructured mitrofanovite is just 33 mV/dec, while reduced mitrofanovite has the same Tafel slope (36 mV/dec) as state-of-the-art electrodes of pure Pt. Mitrofanovite also affords surface stability and robustness to CO poisoning. Accordingly, these findings pave the way for the advent of mitrofanovite for large-scale hydrogen production.
We report on a two-dimensional (2D) V1–xPtxSe2 alloy that exhibits ferromagnetic order and Rashba spin–orbit coupling. Although ferromagnetism is absent in 1T-VSe2 because of the competition with the charge density wave phase, we demonstrate theoretically and experimentally that the substitution of vanadium by platinum in VSe2 (10–50%) to form a homogeneous 2D alloy restores ferromagnetic order down to one monolayer of V0.65Pt0.35Se2. Moreover, the presence of platinum atoms gives rise to Rashba spin–orbit coupling in (V,Pt)Se2, providing an original platform to study the interplay between ferromagnetism and spin–orbit coupling in the 2D limit.
Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX2 (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl2 single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.
TaSe3 is a layered van der Waals semimetal with several inverted band gaps throughout the entire Brillouin zone and nontrivial Z2 topological indices, which place it at the boundary between a strong and a weak topological phase. Our transport experiments reveal a quadratic nonsaturating magnetoresistance (MR) with values reaching 104% at 1.8 K and 14 T, whose origins have to be searched in the material's band structure. Here we combine angle-resolved photoelectron spectroscopy experiments, also with spin resolution, with ab initio calculations based on density functional theory in order to draw a connection between the Fermi surface topology and the measured transport properties. Simulations based on the calculated Fermi surface clarify that electron-hole compensation plays an important role for the observed MR in the bulk material. At the surface, the position of Fermi level differs, and it can be controlled by alkali metal deposition which accounts not only for the energy shift of the bands but it slightly modifies the dispersion of the valence and conduction bands. We propose that the observed band-gap renormalization might offer a route for engineering the topological phase in TaSe3, alternative to strain.
Topological materials are a promising platform for a wide range of next-generation technologies. In article number 2100063, Antonio Politano, Salvador Barraza-Lopez, Jin Hu and co-workers report a new topological material, SmSbTe, displaying a coexistence of magnetism, enhanced electronic correlations, and Dirac fermions, as illustrated in the cover image. This discovery suggests that SmSbTe represents an ideal platform for exotic quantum phenomena arising from the interplay between degrees of freedom. The manipulation of these phenomena would further pave a path for quantum material-based functional devices.
Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.
By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm–2 and a Tafel slope of 36–49 mV dec–1 associated with the Volmer–Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.
Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1−xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Γ−M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1−xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations.
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal-line fermions. In this material family, the LnSbTe (Ln = lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal-line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
The magnetic properties of the two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of t2g orbital splitting and carried out in comparison with the CrI3 prototypical case, where the splitting is negligible. In VI3 bilayers, the empty a1g state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different VI3 stackings (labeled AB and AB′), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the AB′ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
Dirac semimetals are classified into different phases based on the types of Dirac fermions. Tuning the transition among different types of Dirac fermions in one system remains a challenge. Recently, KMgBi was predicted to be located at a critical state in which various types of Dirac fermions can be induced owing to the existence of a flatband. Here, we carried out systematic studies on the electronic structure of KMgBi single crystals by combining angle-resolve photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. The flatband was clearly observed near the Fermi level. We also revealed a small bandgap of ∼20 meV between the flatband and the conduction band. These results demonstrate the critical states of KMgBi that transition among various types of Dirac fermions can be tuned in one system.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
We report on the electronic properties of an artificial system obtained by the intercalation of equiatomic FeCo layers under graphene grownon Ir(111). Upon intercalation, the FeCo film grows epitaxially on Ir(111), resulting in a lattice-mismatched system. By performing densityfunctional theory calculations, we show that the intercalated FeCo layer leads to a pronounced corrugation of the graphene film. At the sametime, the FeCo intercalated layers induce a clear transition from a nearly undisturbed to a strongly hybridized graphenep-band, as measuredby angle-resolved photoemission spectroscopy. A comparison of experimental results with the computed band structure and the projecteddensity of states unveils a spin-selective hybridization between thepband of graphene and FeCo-3dstates. Our results demonstrate that thereduced dimensionality, as well as the hybridization within the FeCo layers, induces a narrowing and a clear splitting of Fe 3d-up and Fe3d-down-spin bands of the confined FeCo layers with respect to bulk Fe and Co.
In non-magnetic materials the combination of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC) determines the spin polarization of the band structure. However, a local spin polarization can also arise in centrosymmetric crystals containing ISB subunits. This is namely the case for the nodal-line semimetal ZrSiTe where, by combining spin- and angle-resolved photoelectron spectroscopy with ab initio band structure calculations, we reveal a complex spin polarization. In the bulk, the valence and conduction bands exhibit opposite spin orientations in two spatially separated two-dimensional ZrTe sectors within the unit cell, yielding no net polarization. We also observe spin-polarized surface states that are well separated in energy and momentum from the bulk bands. A layer-by-layer analysis of the spin polarization allows us to unveil the complex evolution of the signal in the bulk states near the surface, thus bringing the intertwined nature of surface and bulk effects to the fore.
The advent of topological semimetals enables the exploitation of symmetry-protected
topological phenomena and quantized transport. Here, we present homogeneous rectifiers,
converting high-frequency electromagnetic energy into direct current, based on low-energy
Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the
first implementation. Explicitly, these devices display room-temperature photosensitivity as
high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of
22, originating from the interplay between the spin-polarized surface and bulk states. Device
performances in terms of broadband operation, high dynamic range, as well as their high
sensitivity, validate the immense potential and unique advantages associated to the control of
nonequilibrium gapless topological states via built-in electric field, electromagnetic polar-
ization and symmetry breaking in topological semimetals. These findings pave the way for the
exploitation of topological phase of matter for high-frequency operations in polarization-
sensitive sensing, communications and imaging.
Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden–Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden–Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden–Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.
Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers–Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.
Metal monochalcogenides (MX) have recently been rediscovered as two-dimensional materials with electronic properties highly dependent on the number of layers. Although some intriguing properties appear in the few-layer regime, the carrier mobility of MX compounds increases with the number of layers, motivating the interest in multilayered heterostructures or bulk materials. By means of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we compare the electronic band structure of bulk ε−GaSe and ε-InSe semiconductors. We focus our attention on the top valence band of the two compounds along main symmetry directions, discussing the effect of spin-orbit coupling and contributions from post-transition-metal (Ga or In) and Se atoms. Our results show that the top valence band at Γ point is dominated by Se pz states, while the main effect of Ga or In appears more deeply in binding energy, at the Brillouin zone corners, and in the conduction band. These findings explain also the experimental observation of a hole effective mass rather insensitive to the post-transition metal. Finally, by means of spin-resolved ARPES and surface band structure calculations we describe Rashba-Bychkov spin splitting of surface states in ε−InSe.
We study the 2×2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe2 in the 2D limit.
Out-of-plane Ga2Se3 nanowires are grown by molecular beam epitaxy via Au-assisted heterovalent exchange reaction on GaAs substrates in the absence of Ga deposition. It is shown that at a suitable temperature around 560 degrees C the Audecorated GaAs substrate releases Ga atoms, which react with the incoming Se and feed the nanowire growth. The nanowire composition, crystal structure, and morphology are characterized by Raman spectroscopy and electron microscopy. The growth mechanism is investigated by X-ray photoelectron spectroscopy. We explore the growth parameter window and find an interesting effect of shortening of the nanowires after a certain maximum length. The nanowire growth is described within a diffusion transport model, which explains the nonmonotonic behavior of the nanowire length versus the growth parameters. Nanowire shortening is explained by the blocking of Ga supply from the GaAs substrate by thick, in-plane worm-like Ga2Se3 structures, which grow concomitantly with the nanowires, followed by backward diffusion of Ga atoms from the nanowires down to the substrate surface.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
Bulk PtSn4 has recently attracted the interest of the scientific community for the presence of electronic states exhibiting Dirac node arcs, enabling possible applications in nanoelectronics. Here, by means of surface-science experiments and density functional theory, we assess its suitability for catalysis by studying the chemical reactivity of the (0 1 0)-oriented PtSn4 surface toward CO, H2O, O2 molecules at room temperature and, moreover, its stability in air. We demonstrate that the catalytic activity of PtSn4 is determined by the composition of the outermost atomic layer. Specifically, we find that the surface termination for PtSn4 crystals cleaved in vacuum is an atomic Sn layer, which is totally free from any CO poisoning. In oxygen-rich environment, as well as in ambient atmosphere, the surface termination is a SnOx skin including SnO and SnO2 in comparable amount. However, valence-band states, including those forming Dirac node arcs, are only slightly affected by surface modifications. The astonishingly beneficial influence of surface oxidation on catalytic activity has been demonstrated by electrocatalytic tests evidencing a reduction of the Tafel slope, from 442 down to 86 mV dec−1, whose origin has been explained by our theoretical model. The use of surface-science tools to tune the chemical reactivity of PtSn4 opens the way toward its effective use in catalysis, especially for hydrogen evolution reaction and oxygen evolution reaction.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
Chiral crystal YbNi3Ga9 is known as an intermediate valence compound in which a strong hybridization between the 4f orbitals and the conduction band is present. The Co-substitution to YbNi3Ga9 works as a hole doping that reduces the Kondo temperature and enhances the effective mass of itinerant charge carriers. Using angle-resolved photoelectron spectroscopy, the complex band structure of Yb(Ni1−xCox)3Ga9 (x=0,0.1) is revealed. A Yb2+ 4f7/2 band and evidences of hybridization to valence bands are found near the Fermi level. Both YbNi3Ga9 and the Co-substituted compound exhibit double hexagonal Fermi surfaces centered at the Γ¯-point, surrounded by a large snowflake-like surface, and a triangular electron-like surface along the Γ¯M¯ direction. By changing the incident photon energy, the band dispersion along the c-axis and the barrel-shaped Fermi surface is observed.
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
We predict NiTe2 to be a type-II Dirac semimetal based on ab initio calculations and explore its bulk and spin-polarized surface states using spin- and angle-resolved photoemission spectroscopy (spin-ARPES). Our results show that, unlike PtTe2, PtSe2, and PdTe2, the Dirac node in NiTe2 is located in close vicinity to the Fermi energy. Additionally, NiTe2 also hosts a pair of band inversions below the Fermi level along the Γ−A high-symmetry direction, with one of them leading to a Dirac cone in the surface states. The bulk Dirac nodes and the ladder of band inversions in NiTe2 support unique topological surface states with chiral spin texture over a wide range of energies. Our work paves the way for the exploitation of the low-energy type-II Dirac fermions in NiTe2 in the fields of spintronics, infrared plasmonics, and ultrafast optoelectronics.
The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.
Palladium ditelluride (PdTe2) is a novel transition‐metal dichalcogenide exhibiting type‐II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface‐science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter‐wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ≈+12 kJ mol−1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub‐nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2‐based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2‐based millimeter‐wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2‐based high‐temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
The layered van der Waals antiferromagnet MnBi2Te4 has been predicted to combine the band ordering of archetypical topological insulators such as Bi2Te3 with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi2Te4(0001) single crystals by use of spin- and angle-resolved photoelectron spectroscopy experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.
Electronic correlation is believed to play an important role in exotic phenomena such as insulator-metal transition, colossal magnetoresistance, and high-temperature superconductivity in correlated electron systems. Recently, it has been shown that electronic correlation may also be responsible for the formation of unconventional plasmons. Herewith, using a combination of angle-dependent spectroscopic ellipsometry, angle resolved photoemission spectroscopy, and Hall measurements, all as a function of temperature supported by first-principles calculations, the existence of low-loss high-energy correlated plasmons accompanied by spectral weight transfer, a fingerprint of electronic correlation, in topological insulator (Bi0.8Sb0.2)2Se3 is revealed. Upon cooling, the density of free charge carriers in the surface states decreases whereas that in the bulk states increases, and the recently reported correlated plasmons are key to explaining this phenomenon. Our result shows the importance of electronic correlation in determining correlated plasmons and opens an alternative path in engineering plasmonic-based topologically insulating devices.
Whenever one is interested in making high temperature superconductor-based devices, the goodness of the sample surface in terms of structural and electrical properties is a strong issue. In fact, it is well known that the surface of high Tc superconducting samples is not bulk-representative, due to air contamination and to the possible presence of oxygen vacancies. In addition, the quality of the surface layer results to be crucial in surface sensitive measurements as in X-ray photoelectron and Angle-resolved photoemission spectroscopy. Recently, some studies have been dedicated to the realization of devices based on electron-doped cuprates, bilayers and nanowires, showing the actual possibility to realize good quality junctions by using these cuprates. In this work, we report on the fabrication of thin films of the electron-doped Nd2−xCexCuO4±δ compound and analyze the surface natural barrier of as-grown films by means of point contact spectroscopy measurements. Suitable treatments of samples in an ozone rich atmosphere have been developed in order to improve the surface quality of the films. Auger electron spectroscopy has been used to monitor the effectiveness of these treatments.
Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were produced via hot-injection from metal chloride precursors. A systematic investigation of the influence of synthesis conditions on composition, size and microstructure of CZTS NCs is presented. The results show that the solvent amount (oleylamine) is a key parameter in the synthesis of this quaternary chalcogenide: a low solvent content leads to CZTS NCs with a prominent kesterite phase with the desired composition for use as absorber material in thin film photovoltaic cells. It is also observed that lowering the injection temperature (250 °C) favours formation of CZTS NCs in the wurtzite phase. The effect of different high temperature thermal treatments on the grain growth is also shown: large crystals are obtained with annealing in inert atmosphere, whereas nanocrystalline films are obtained introducing sulphur vapour during the heat treatment. A correlation between the grain dimension and the carbonaceous residues in the final films is investigated. It is shown that the grain growth is hindered by organic residues, amount and nature of which depend on the heat treatment atmosphere. In fact, oleylamine is removed by a complex pyrolytic process, which is affected by the presence of sulphur vapour. The latter favours the stability of oleylamine residuals against its non-oxidative release.
The band inversions that generate the topologically non-trivial band gaps of topological insulators and the isolated Dirac touching points of three-dimensional Dirac semimetals generally arise from the crossings of electronic states derived from different orbital manifolds. Recently, the concept of single orbital-manifold band inversions occurring along high-symmetry lines has been demonstrated, stabilising multiple bulk and surface Dirac fermions. Here, we discuss the underlying ingredients necessary to achieve such phases, and discuss their existence within the family of transition metal dichalcogenides. We show how their three-dimensional band structures naturally produce only small k z projected band gaps, and demonstrate how these play a significant role in shaping the surface electronic structure of these materials. We demonstrate, through spin- and angle-resolved photoemission and density functional theory calculations, how the surface electronic structures of the group-X TMDs PtSe2 and PdTe2 are host to up to five distinct surface states, each with complex band dispersions and spin textures. Finally, we discuss how the origin of several recently-realised instances of topological phenomena in systems outside of the TMDs, including the iron-based superconductors, can be understood as a consequence of the same underlying mechanism driving k z -mediated band inversions in the TMDs.
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface.
By means of angle‐resolved photoemission spectroscopy measurements, the electronic band structure of the three‐dimensional PbBi4Te7 and PbBi6Te10 topological insulators is compared. The measurements clearly reveal coexisting topological and multiple Rashba‐like split states close to the Fermi level for both systems. The observed topological states derive from different surface terminations, as confirmed by scanning tunneling microscopy measurements, and are well‐described by the density functional theory simulations. Both the topological and the Rashba‐like states reveal a prevalent two‐dimensional character barely affected by air exposure. X‐ray and valence band photoemission measurements suggest Rashba‐like states stem from the van der Waals gap expansion, consistently with density functional theory calculations.
We report on the influence of spin-orbit coupling (SOC) in Fe-based superconductors via application of circularly polarized spin and angle-resolved photoemission spectroscopy. We combine this technique in representative members of both the Fe-pnictides (LiFeAs) and Fe-chalcogenides (FeSe) with tight-binding calculations to establish an ubiquitous modification of the electronic structure in these materials imbued by SOC. At low energy, the influence of SOC is found to be concentrated on the hole pockets, where the largest superconducting gaps are typically found. This effect varies substantively with the
kzdispersion, and in FeSe we find SOC to be comparable to the energy scale of orbital order. These results contest descriptions of superconductivity in these materials in terms of pure spin-singlet eigenstates, raising questions regarding the possible pairing mechanisms and role of SOC therein.
We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.
The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy’s proof-of-concept compares experiments using 4,4′′-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.
The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor
PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/
BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the
BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.
Carbon nanomaterials exhibit extraordinary mechanical and electronic properties desirable for future technologies. Beyond the popular sp2‐scaffolds, there is growing interest in their graphdiyne‐related counterparts incorporating both sp2 and sp bonding in a regular scheme. Herein, we introduce carbonitrile‐functionalized graphdiyne nanowires, as a novel conjugated, one‐dimensional (1D) carbon nanomaterial systematically combining the virtues of covalent coupling and supramolecular concepts that are fabricated by on‐surface synthesis. Specifically, a terphenylene backbone is extended with reactive terminal alkyne and polar carbonitrile (CN) moieties providing the required functionalities. It is demonstrated that the CN functionalization enables highly selective alkyne homocoupling forming polymer strands and gives rise to mutual lateral attraction entailing room‐temperature stable double‐stranded assemblies. By exploiting the templating effect of the vicinal Ag(455) surface, 40 nm long semiconducting nanowires are obtained and the first experimental assessment of their electronic band structure is achieved by angle‐resolved photoemission spectroscopy indicating an effective mass below 0.1m0 for the top of the highest occupied band. Via molecular manipulation it is showcased that the novel oligomer exhibits extreme mechanical flexibility and opens unexplored ways of information encoding in clearly distinguishable CN‐phenyl trans–cis species. Thus, conformational data storage with density of 0.36 bit nm−2 and temperature stability beyond 150 K comes in reach.
The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Extremely large magnetoresistance (XMR), observed in transition-metal dichalcogenides,
WTe2, has attracted recently a great deal of research interest as it shows no sign of saturation up to a magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there is a great deal of discussion on the role of band structure changes in the temperature-dependent XMR in this compound. In this contribution, we study the band structure of WTe2 using angle-resolved photoemission spectroscopy and first-principles calculations to demonstrate that the temperature-dependent band structure has no substantial effect on the temperature-dependent XMR, as our measurements do not show band structure changes upon increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similarly to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide valuable information in shaping the mechanism of temperature-dependent XMR in WTe2.
Transition-metal dichalcogenides (WTe2 and MoTe2) have recently drawn much attention, because of the
nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the
predictions of likely type-II Weyl semimetals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe2 and MoTe2 the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe2, while it is yet to be clear in the case of MoTe2 which has an identical crystal structure of WTe2 at low temperatures. In this Rapid Communication, we report low-energy electronic structure and Fermi surface topology of MoTe2 using angle-resolved photoemission spectrometry (ARPES) technique and first-principles calculations, and compare them with that of WTe2 to understand the mechanism of XMR. Our measurements demonstrate that MoTe2 is an uncompensated semimetal, contrary to WTe2 in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe2. In this context, we also discuss the applicability of other existing conjectures on the XMR of these compounds.
The prediction of Weyl fermions in the low-temperature noncentrosymmetric
1T′ phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the
1T′ phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
PtBi2 with a layered hexagonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high-resolution angle-resolved photoemission spectroscopy, we present a systematic study on its bulk and surface electronic structure. Through careful comparison with first principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real composition of samples. We find significant electron doping in PtBi2, implying a substantial Bi-deficiency-induced disorder therein. Intriguingly, we discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude linear band dispersion in the quantum limit as the cause of the unconventional large linear magnetoresistance but give support to the classical disorder model from the perspective of the electronic structure.
The complex electronic properties of
ZrTe5 have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of
ZrTe5, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of ZrTe5.
The electronic structure of the chiral helimagnet
Cr1/3NbS2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS2 layers but also cause significant modifications of the electronic structure of the host NbS2 material. In particular, the data provide evidence that a description of the electronic structure of Cr1/3NbS2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. The relevance of these results to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.
Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal–organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.