Materials and heterostructures that exhibit coupling between elastic and magnetic degrees of freedom are of both fundamental and technological interest. In particular, they have great potential for novel energy-efficient spintronic devices because acoustic waves can generate coherent and long-living spin waves through inverse magnetostriction, which consists in variations in the magnetization due to lattice deformations. As optical methods are versatile, non-invasive and contactless, an all-optical approach has been implemented and applied to study magnetoelastic coupling in a ferromagnetic film on a glass substrate. The present thesis work was performed at the NFFA-SPRINT facility of IOM-CNR in the Fermi@Elettra hall at Trieste, where I actively contributed to the realization and characterization of an all new experimental setup which is able to combine transient grating spectroscopy with a time-resolved Faraday polarimetry.
NFFA Thesis
University of Milan Bachelor's Degree Thesis, (2019)
All-resolved photoemission spectroscopy of Fe(100) and passivated Fe-p(1x1)O surfaces
A.M. Finardi (Supervisors: G. Rossi, I. Vobornik, J. Fujii)
Le proprietà ottiche, elettroniche e magnetiche dei solidi e delle loro superfici dipendono dalla struttura degli stati elettronici entro alcuni eV dal livello di Fermi. I calcoli della struttura elettronica a bande sono efficaci solo nel caso di materiali a bassa interazione elettrone-elettrone (correlazione). L'esperimento e la guida necessaria per lo studio delle proprietà elettroniche dei solidi e delle loro superfici, ed in particolare la spettroscopia di fotoemissione (photoemission spectroscopy - PES) che si basa sulla misura dello spettro energetico degli elettroni emessi da un solido eccitato da un fascio di fotoni monocromatici di energia eccedente la funzione lavoro. La risoluzione dell'angolo di emissione (Angle-resolved photemission spectroscopy - ARPES) permette di avere informazioni sulla legge di dispersione En(k) dello stato elettronico iniziale, mentre la misura del grado di polarizzazione in spin del fascio di elettroni completa il set di numeri quantici, fornendo un dato molto importante per lo studio delle correlazioni elettroniche.
Login
You're being redirected, please wait few moments...