The present thesis work has been performed within a new-born laboratory called Spin Polar-ization Research Instrument in the Nanoscale and Time domain (SPRINT laboratory), as apart of the research infrastructures circuit NFFA-Trieste (Nano Foundries and Fine Analysis -belonging to the wider NFFA-Europe circuit) and hosted in the experimental hall of the freeelectron laser FERMI@Elettra.The SPRINT laboratory rises as an answer to the urgent request of the scientific communityof extension of photoemission spectroscopies (PES), not only energy-, but possibly also angle-and spin-resolved, to the time domain in the sub-picosecond regime. The integration of a PESapparatus within a setup for stroboscopic measurements (that is in a pump-probe scheme) pavesthe way to time resolved study of the relaxation of optically populated electronic states, thusenabling the study the ultrafast dynamics of the excitations inside the materials, with greatbenefit from both the fundamental and the technological point of view.
Login
You're being redirected, please wait few moments...