This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Universit`a degli Studi di Milano, that has been carried out since November 2019 at the Istituto Officina dei Materiali of the Consiglio Nazionale delle Ricerche (IOM-CNR) in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures and in the framework of the NFFA facility. My experimental activity employed complementary spectroscopy and polarimetry techniques oriented to address the characterisation of electronic and spin properties of systems with decreasing dimensionality. This programme has been conducted by exploiting state-of-the-art infrastructures to generate visible, UV and EUV ultrashort pulses (tabletop lasers and HHG at NFFA-SPRINT laboratory) and soft X-ray synchrotron light (at Elettra, Diamond and ESRF synchrotron light sources). I used photoemission as the main tool in my investigation, supplementing my results with absorption spectroscopy. I focused on three materials, Fe(001)-p(1x1)O/MgO, EuSn2P2 and VI3, of high interest in modern and next-generation magnetic devices. In the three systems I studied the electronic band structure to identify key features hinting at the bound electrons behaviour. I investigated the properties of the magnetically ordered phases and found evidence of the reduced dimensionality in the emergence of atypical spin ordering and the increasingly manifest electron correlation phenomena. The information retained by band electrons is critical to access the spin polarisation of the bands and to give insight into the effects of spatial confinement on the spin degree of freedom.
NFFA Thesis
University of Milan PhD Thesis, (2019)
Understanding the electronic properties of quantum materials by means of photoemission with angular and spin resolution
This thesis contains a selection of the results on the shallow electron states of quantum materials that I obtained as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano. I carried out my doctoral research activity mostly at the TASC-IOM CNR laboratory, in the framework of the NFFA and APE-beamline facilities (Elettra Sincrotrone Trieste), as well in dedicated sessions at the I2; beamline of the Diamond light source, Harwell Campus, UK. To access the electronic properties of materials I specialised myself in photoemission spectroscopy techniques. High quality samples are a prerequisite for any attempt to study quantum materials so that a major effort in my PhD project has been to master the growth of novel quantum materials by means of Pulsed Laser Deposition (PLD). Given that the PLD is integrated in the suite of UHV facilities attached in-situ to the APE beamline, I directly characterised the electronic properties of the PLD grown samples exploiting both the spectroscopic techniques available at the beamline (ARPES, X-ray photoemission and absorption spectroscopies: XPS and XAS), either ex-situ structural characterisation tools (X-ray diffraction –XRD– and X-ray reflectivity, XRR).
NFFA Thesis
University of Milan Master's Degree Thesis, (2019)
Spin-polarization measurement of the quantum yield from solid surfaces as excited by high harmonics of 100 fs-scale laser sources
La misura della polarizzazione in spin di un fascio di elettroni fotoemessi da una superficie ferromagnetica permette di studiare in modo diretto la struttura elettronica determinata dall’interazione di scambio e quindi il momento magnetico di spin del sistema, caratterizzandone il comportamento magnetico. Da una parte lo sviluppo del campo della spintronica, dall’altra la richiesta sempre crescente di strumenti e dispositivi di immagazzinamento e trattamento dati ad alte prestazioni, marcano la necessità di esplorare le configurazioni degli stati elettronici e le loro eccitazioni.
Login
You're being redirected, please wait few moments...