The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.
We employed operando soft X-ray absorption spectroscopy (XAS) to monitor the changes in the valence states and spin properties of LaMn1–xCoxO3 catalysts subjected to a mixture of CO and O2 at ambient pressure. Guided by simulations based on charge transfer multiplet theory, we quantitatively analyze the Mn and Co 2p XAS as well as the oxygen K-edge XAS spectra during the reaction process. The Mn sites are particularly sensitive to the catalytic reaction, displaying dynamics in their oxidation state. When Co doping is introduced (x ≤ 0.5), Mn oxidizes from Mn2+ to Mn3+ and Mn4+, while Co largely maintains a valence state of Co2+. In the case of LaCoO3, we identify high-spin and low-spin Co3+ species combined with Co2+. Our investigation underscores the importance to consider the spin and valence states of catalyst materials under operando conditions.
The doping of metal oxides is an interesting route to increase catalyst activity and lower activation temperatures in H2 dissociation to replace Pt in catalysts for electrochemical devices. In this process, the roles of both the matrix and dopant cations are fundamental to understanding and designing more efficient catalysts. In this work, we have investigated the reduction process in pure and doped CeO2 films. We followed the oxidation states of Ce and dopants (Cu and Fe) during H2 exposure at ambient pressure by combining X-ray absorption spectroscopy and gas chromatography on 5 nm films in the temperature range of 300–620 K. We have observed that Cu doping (at concentrations of 5 and 14 at. %) promotes the ceria reduction, while the addition of Fe seems to have a limited impact on the oxide chemical reactivity only at low temperatures. Moreover, thanks to the chemical sensitivity of operando X-ray absorption spectroscopy, we were able to follow simultaneously the evolution of Ce and Cu oxidation states during the reaction, which has permitted to identify two distinct reduction processes taking place above and below 500 K. These measurements show that at low temperatures, the H2 dissociation takes place at the Cu1+ sites, thus explaining the higher reactivity of the Cu-doped samples. The described mechanism can help in the design of Pt-free catalysts with enhanced performances.
Mn3Si2Te6 is a rare example of a layered ferrimagnet. It has recently been shown to host a colossal angular magnetoresistance as the spin orientation is rotated from the in- to out-of-plane direction, proposed to be underpinned by a topological nodal-line degeneracy in its electronic structure. Nonetheless, the origins of its ferrimagnetic structure remain controversial, while its experimental electronic structure, and the role of correlations in shaping this, are little explored to date. Here, we combine x-ray and photoemission-based spectroscopies with first-principles calculations to probe the elemental-selective electronic structure and magnetic order in Mn3Si2Te6. Through these, we identify a marked Mn-Te hybridization, which weakens the electronic correlations and enhances the magnetic anisotropy. We demonstrate how this strengthens the magnetic frustration in Mn3Si2Te6, which is key to stabilizing its ferrimagnetic order, and find a crucial role of both exchange interactions extending beyond nearest-neighbors and antisymmetric exchange in dictating its ordering temperature. Together, our results demonstrate a powerful methodology of using experimental electronic structure probes to constrain the parameter space for first-principles calculations of magnetic materials, and through this approach, reveal a pivotal role played by covalency in stabilizing the ferrimagnetic order in Mn3Si2Te6.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
In this work, which follows Part I that is dedicated to the precatalyst, we investigate the electronic properties and the accessibility of the Ti active sites in a highly active silica-supported Ziegler–Natta catalyst for industrial polyethylene production, applying a multi-scale, multi-technique approach. Complementary electronic spectroscopies (i.e. Ti K-edge XANES, Ti L2,3-edge NEXAFS and DR UV–Vis-NIR) reveal the coexistence of several titanium phases, whose relative amount depends on the concentration of the alkyl aluminum activator. In addition to β-TiCl3-like clusters and monomeric Ti(IV) sites, which are already present in the precatalyst, isolated Ti(III) sites and α-TiCl3-like clusters are formed in the presence of the activator. Two families of alkylated Ti(III) sites characterized by a different electron density are detected by IR spectroscopy of adsorbed CO, and two types of Ti-acyl species are formed upon CO insertion into the Ti-alkyl bond, characterized by a different extent of η2-coordination. The whole set of data suggests that TiCl3 clusters are preferentially formed at the exterior of the catalyst particles, likely as a consequence of Ti(III) mobility in the presence of strong Lewis acids, in most cases hampering the spectroscopic detection of isolated Ti(III) sites. In contrast, only monomeric Ti(III) sites are formed at the interior of the catalyst particles, characterized by a high electron density evocative of the presence of electron donors in the close proximity (e.g. aluminum alkoxide by-products). These sites are less accessible because of diffusion limitations, and only become visible by surface-sensitive spectroscopic methods (such as Ti L2,3-edge TEY-NEXAFS) upon the fragmentation of the catalyst particles.
Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.
Magnesium chloride is a prototypical deliquescent material whose surface properties, although central for Ziegler–Natta cataysis, have so far remained elusive to experimental characterization. In this work, we use surface-selective X-ray absorption spectroscopy (XAS) at ambient pressure in combination with multivariate curve resolution, molecular dynamics, and XAS theoretical methods to track in real time and accurately describe the interaction between water vapor and the MgCl2 surface. By exposing MgCl2 to water vapor at temperatures between 595 and 391 K, we show that water is preferentially adsorbed on five-coordinated Mg2+ sites in an octahedral configuration, confirming previous theoretical predictions, and find that MgCl2 is capable of retaining a significant amount of adsorbed water even under prolonged heating to 595 K. As a consequence, our work provides first experimental insights into the unique surface affinity of MgCl2 for atmospheric water. The developed technique is proven highly sensitive to the modifications induced by adsorbates on a given low-Z metal based surface and may be useful in the toolbox required to disentangle the mechanisms of interfacial chemical processes.
It is well-known that all the phases of the manufacturing influence the extraordinary aesthetic and acoustic features of Stradivari’s instruments. However, these masterpieces still keep some of their secrets hidden by the lack of documentary evidence. In particular, there is not a general consensus on the use of a protein-based ground coating directly spread on the wood surface by the Cremonese Master. The present work demonstrates that infrared scattering-type scanning near-fields optical microscopy (s-SNOM) may provide unprecedented information on very complex cross-sectioned microsamples collected from two of Stradivari’s violins, nanoresolved chemical sensitivity being the turning point for detecting minute traces of a specific compound, namely proteins, hidden by the matrix when macro or micro sampling approaches are exploited. This nanoresolved chemical-sensitive technique contributed new and robust evidence to the long-debated question about the use of proteinaceous materials by Stradivari.
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide–water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Motivated by the recent wealth of exotic magnetic phases emerging in two-dimensional frustrated lattices, we investigate the origin of possible magnetism in the monolayer family of triangular lattice materials MX2 (M=V, Mn, Ni and X=Cl, Br, I). We first show that consideration of general properties such as filling and hybridization enables to formulate the trends for the most relevant magnetic interaction parameters. In particular, we observe that the effects of spin-orbit coupling (SOC) can be effectively tuned through the ligand elements as the considered 3d transition metal ions do not strongly contribute to the anisotropic component of the intersite exchange interaction. Consequently, we find that the corresponding SOC matrix elements differ significantly from the atomic limit. In the next step and by using two ab initio based complementary approaches, we extract realistic effective spin models and find that in the case of heavy ligand elements, SOC effects manifest in anisotropic exchange and single-ion anisotropy only for specific fillings.
This work presents an original approach to preparing pure and Ni-doped CeO2 nanoparticles (NPs) that can be directly drop-casted on a substrate or calcined to form powders. The reduction of the NPs in H2 is very different than the one usually anticipated for supported Ni–CeO2 catalysts. In situ soft X-ray absorption and infrared spectroscopies revealed that the reduction of Ce4+ into Ce3+ in H2 proceeds via simultaneous oxidation of Ni2+ ions into Niδ+ (2<δ<3). Comparison with reference samples indicates that Ce4+ ions reduction is promoted over Ni-doped CeO2 NPs, whereas that of Ni2+ is hindered. Theoretical simulation of Ni L-edge spectra suggested that Ni dopant into ceria is in a square planar four-coordinate environment, in contrast to the familiar octahedral symmetry of bulk nickel oxides. Our results reveal that the surface chemistry of Ni-doped CeO2 is quite distinct as compared to that of the individual bulk oxides, which potentially can lead to a different performance of this material, notably in catalytic applications.
Curved magnets attract considerable interest for their unusually rich phase diagram, often encompassing exotic (e.g., topological or chiral) spin states. Micromagnetic simulations are playing a central role in the theoretical understanding of such phenomena; their predictive power, however, rests on the availability of reliable model parameters to describe a given material or nanostructure. Here we demonstrate how noncollinear-spin polarized density-functional theory can be used to determine the flexomagnetic coupling coefficients in real systems. By focusing on monolayer CrI3, we find a crossover as a function of curvature between a magnetization normal to the surface to a cycloidal state, which we rationalize in terms of effective anisotropy and Dzyaloshinskii-Moriya contributions to the magnetic energy. Our results reveal an unexpectedly large impact of spin-orbit interactions on the curvature-induced anisotropy, which we discuss in the context of existing phenomenological models
Multiferroic materials have attracted wide interest because of their exceptional static1,2,3 and dynamical4,5,6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii–Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.
Here, we discuss the key features of electrocatalysis with mitrofanovite (Pt3Te4), a recently discovered mineral with superb performances in hydrogen evolution reaction. Mitrofanovite is a layered topological metal with spin-polarized topological surface states with potential applications for spintronics. However, mitrofanovite is also an exceptional platform for electrocatalysis, with costs of the electrodes suppressed by 47% owing to the partial replacement of Pt with Te. Remarkably, the Tafel slope in nanostructured mitrofanovite is just 33 mV/dec, while reduced mitrofanovite has the same Tafel slope (36 mV/dec) as state-of-the-art electrodes of pure Pt. Mitrofanovite also affords surface stability and robustness to CO poisoning. Accordingly, these findings pave the way for the advent of mitrofanovite for large-scale hydrogen production.
Two-dimensional (2D) van der Waals (vdW) magnets provide an ideal platform for exploring, on the fundamental side, new microscopic mechanisms and for developing, on the technological side, ultracompact spintronic applications. So far, bilinear spin Hamiltonians have been commonly adopted to investigate the magnetic properties of 2D magnets, neglecting higher order magnetic interactions. However, we here provide quantitative evidence of giant biquadratic exchange interactions in monolayer NiX2 (X=Cl, Br and I), by combining first-principles calculations and the newly developed machine learning method for constructing Hamiltonian. Interestingly, we show that the ferromagnetic ground state within NiCl2 single layers cannot be explained by means of the bilinear Heisenberg Hamiltonian; rather, the nearest-neighbor biquadratic interaction is found to be crucial. Furthermore, using a three-orbitals Hubbard model, we propose that the giant biquadratic exchange interaction originates from large hopping between unoccupied and occupied orbitals on neighboring magnetic ions. On a general framework, our work suggests biquadratic exchange interactions to be important in 2D magnets with edge-shared octahedra.
High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO+1/2 O2 at 250 °C, CO2 is produced while bidentante carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorbtion geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft XAS together with the developed data analysis work-flow may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
Single crystals of the hexagonal triangular lattice compound AgCrSe2 have been grown by chemical vapor transport. The crystals have been carefully characterized and studied by magnetic susceptibility, magnetization, specific heat, and thermal expansion. In addition, we used Cr-electron spin resonance and neutron diffraction to probe the Cr 3d3 magnetism microscopically. To obtain the electronic density of states, we employed x-ray absorption and resonant photoemission spectroscopy in combination with density functional theory calculations. Our studies evidence an anisotropic magnetic order below TN=32K. Susceptibility data in small fields of about 1 T reveal an antiferromagnetic (AFM) type of order for H⊥c, whereas for H∥c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H⊥c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+=5T, which is absent for H∥c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fanlike arrangement above H+. A fully ferromagnetically polarized state is obtained above the saturation field of H⊥S=23.7T at 2 K with a magnetization of Ms=2.8μB/Cr. For H∥c, M(H) monotonically increases and saturates at the same Ms value at H∥S=25.1T at 4.2 K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T∗=45K, which is a clear fingerprint of short range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possibly related to the noncentrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen-based delafossites, can be tuned by relatively small, experimentally accessible magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
Topological materials are a promising platform for a wide range of next-generation technologies. In article number 2100063, Antonio Politano, Salvador Barraza-Lopez, Jin Hu and co-workers report a new topological material, SmSbTe, displaying a coexistence of magnetism, enhanced electronic correlations, and Dirac fermions, as illustrated in the cover image. This discovery suggests that SmSbTe represents an ideal platform for exotic quantum phenomena arising from the interplay between degrees of freedom. The manipulation of these phenomena would further pave a path for quantum material-based functional devices.
Hybridization of electronic states and orbital symmetry in transition metal oxides are generally considered key ingredients in the description of both their electronic and magnetic properties. In the prototypical case of La0.65Sr0.35MnO3 (LSMO), a landmark system for spintronics applications, a description based solely on Mn 3d and O 2p electronic states is reductive. We thus analyzed elemental and orbital distributions in the LSMO valence band through a comparison between density functional theory calculations and experimental photoelectron spectra in a photon energy range from soft to hard x rays. We reveal a number of hidden contributions, arising specifically from La 5p, Mn 4s, and O 2s orbitals, considered negligible in previous analyses; our results demonstrate that all these contributions are significant for a correct description of the valence band of LSMO and of transition metal oxides in general.
Composite multiferroics containing ferroelectric and ferromagnetic components often have much larger magnetoelectric coupling compared to their single-phase counterparts. Doped or alloyed HfO2-based ferroelectrics may serve as a promising component in composite multiferroic structures potentially feasible for technological applications. Recently, a strong charge-mediated magnetoelectric coupling at the Ni/HfO2 interface has been predicted using density functional theory calculations. Here, we report on the experimental evidence of such magnetoelectric coupling at the Ni/Hf0.5Zr0.5O2(HZO) interface. Using a combination of operando XAS/XMCD and HAXPES/MCDAD techniques, we probe element-selectively the local magnetic properties at the Ni/HZO interface in functional Au/Co/Ni/HZO/W capacitors and demonstrate clear evidence of the ferroelectric polarization effect on the magnetic response of a nanometer-thick Ni marker layer. The observed magnetoelectric effect and the electronic band lineup of the Ni/HZO interface are interpreted based on the results of our theoretical modeling. It elucidates the critical role of an ultrathin NiO interlayer, which controls the sign of the magnetoelectric effect as well as provides a realistic band offset at the Ni/HZO interface, in agreement with the experiment. Our results hold promise for the use of ferroelectric HfO2-based composite multiferroics for the design of multifunctional devices compatible with modern semiconductor technology.
Although Ziegler–Natta (ZN) catalysts play a major role in the polyolefin market, a true understanding of their properties at the molecular level is still missing. In particular, there is a lack of knowledge on the electronic properties of Ti sites. Theoretical calculations predict that the electron density of the Ti sites in the precatalysts correlates with the activation energy for olefin insertion in the Ti-alkyl bond generated at these sites after activation by Al-alkyls. It is also well known that the effective charge on the Ti sites in the activated catalysts affects the olefin π-complexation. In this contribution, we exploit two electronic spectroscopies, UV–vis and Ti L2,3-edge near-edge X-ray absorption fine structure (NEXAFS), complemented with theoretical simulation to investigate three ZN precatalysts of increasing complexity (up to an industrial system) and the corresponding catalysts activated by triethylaluminum (TEAl). We provide compelling evidence for the presence of monomeric 6-fold-coordinated Ti4+ species in all of the precatalysts, which however differ in the effective charge on the Ti sites. We also unambiguously demonstrate that these sites are reduced by TEAl to two types of monomeric 5-coordinated Ti3+, either alkylated or not, and that the former are involved in ethylene polymerization. In addition, small TiCl3 clusters are formed in the industrial catalyst, likely due to the occurrence of severe reducing conditions within the catalyst pores. These data prove the potential of these two techniques, coupled with simulation, in providing an accurate description of the electronic properties of heterogeneous ZN catalysts.
The magnetic properties of the two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of t2g orbital splitting and carried out in comparison with the CrI3 prototypical case, where the splitting is negligible. In VI3 bilayers, the empty a1g state is found to play a crucial role in both stabilizing the insulating state and in determining the interlayer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows one to evaluate the interlayer exchange interactions in two different VI3 stackings (labeled AB and AB′), to interpret the results in terms of the virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground state in the AB′ stacking can be switched from antiferromagnetic to ferromagnetic, suggesting the VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
Chirality and magnetism of molecules are two properties that in the last years raised notable interest for the development of novel molecular devices. Chiral helicenes combine these functionalities, and their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel assembling strategy to deposit a sub‐monolayer of enantiopure thia[4]helicene radical cations on a pre‐functionalized Au(111) substrate permitting the persistence of both the paramagnetic character and chirality of these molecules at the nanoscale. In‐house characterizations demonstrated the retention of the chemical and paramagnetic properties after the deposition process. Furthermore, synchrotron‐based X‐ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
The advent of topological semimetals enables the exploitation of symmetry-protected
topological phenomena and quantized transport. Here, we present homogeneous rectifiers,
converting high-frequency electromagnetic energy into direct current, based on low-energy
Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the
first implementation. Explicitly, these devices display room-temperature photosensitivity as
high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of
22, originating from the interplay between the spin-polarized surface and bulk states. Device
performances in terms of broadband operation, high dynamic range, as well as their high
sensitivity, validate the immense potential and unique advantages associated to the control of
nonequilibrium gapless topological states via built-in electric field, electromagnetic polar-
ization and symmetry breaking in topological semimetals. These findings pave the way for the
exploitation of topological phase of matter for high-frequency operations in polarization-
sensitive sensing, communications and imaging.
Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser‐based Jupyter notebook framework. It aims to provide an interactive and user‐friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on‐the‐fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user‐defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider‐based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising‐edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R‐factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.
The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at high doping level up to x=0.4, thanks to the good lat-tice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at macroscopic and atomic level, respectively. Therefore, in epitaxial thin films the homogeneous doping can be obtained even with high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by x-ray photoemission and x-ray absorption show the O 2p band shift towards the Fermi level which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x=0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of high doping level x=0.4.
Two-dimensional (2D) alloys represent a versatile platform that extends the properties of atomically thin transition-metal dichalcogenides. Here, using molecular beam epitaxy, we investigate the growth of 2D vanadium-molybdenum diselenide alloys, VxMo1–xSe2, on highly oriented pyrolytic graphite and unveil their structural, chemical, and electronic integrities via measurements by scanning tunneling microscopy/spectroscopy, synchrotron X-ray photoemission, and X-ray absorption spectroscopy (XAS). Essentially, we found a critical value of x = ∼0.44, below which phase separation occurs and above which a homogeneous metallic phase is favored. Another observation is an effective increase in the density of mirror twin boundaries of constituting MoSe2 in the low V concentration regime (x ≤ 0.05). Density functional theory calculations support our experimental results on the thermal stability of 2D VxMo1–xSe2 alloys and suggest an H phase of the homogeneous alloys with alternating parallel V and Mo strips randomly in-plane stacked. Element-specific XAS of the 2D alloys, which clearly indicates quenched atomic multiplets similar to the case of 2H-VSe2, provides strong evidence for the H phase of the 2D alloys. This work provides a comprehensive understanding of the thermal stability, chemical state, and electronic structure of 2D VxMo1–xSe2 alloys, useful for the future design of 2D electronic devices.
Ti silicates, and in particular Titanium Silicalite‐1 (TS‐1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H 2 O 2 as oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unfathomed. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as main active species, has not been quantitatively discussed in the literature. In this work, we assess the structural features of defective Ti sites on the basis of electronic spectroscopies outcomes, as interpreted through quantum‐mechanical simulation. We disclose here strong evidences that the most common defective Ti sites, often reported in the TS‐1 literature, are monomeric Ti centers, embedded in the zeolite framework, having a distorted octahedral local symmetry.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
Bulk PtSn4 has recently attracted the interest of the scientific community for the presence of electronic states exhibiting Dirac node arcs, enabling possible applications in nanoelectronics. Here, by means of surface-science experiments and density functional theory, we assess its suitability for catalysis by studying the chemical reactivity of the (0 1 0)-oriented PtSn4 surface toward CO, H2O, O2 molecules at room temperature and, moreover, its stability in air. We demonstrate that the catalytic activity of PtSn4 is determined by the composition of the outermost atomic layer. Specifically, we find that the surface termination for PtSn4 crystals cleaved in vacuum is an atomic Sn layer, which is totally free from any CO poisoning. In oxygen-rich environment, as well as in ambient atmosphere, the surface termination is a SnOx skin including SnO and SnO2 in comparable amount. However, valence-band states, including those forming Dirac node arcs, are only slightly affected by surface modifications. The astonishingly beneficial influence of surface oxidation on catalytic activity has been demonstrated by electrocatalytic tests evidencing a reduction of the Tafel slope, from 442 down to 86 mV dec−1, whose origin has been explained by our theoretical model. The use of surface-science tools to tune the chemical reactivity of PtSn4 opens the way toward its effective use in catalysis, especially for hydrogen evolution reaction and oxygen evolution reaction.
The local atomic structure and the magnetic response of Co films intercalated between Graphene and Ir(111) were investigated combining polarized X-ray Absorption Spectroscopy at the Co K edge with Magneto-Optic Kerr Effect. The structural and magnetic evolution upon a 500 °C annealing was evaluated as a function of the film thickness. After the thermal treatment, our thick film (10 monolayers) presented a lower perpendicular magnetic anisotropy (PMA) as well as a reduced average structural disorder. On the other hand, in our thin film (5 monolayers), the annealing enhanced the perpendicular magnetic response and induced a local anisotropy by stretching the Co-Co bonds in the film plane and compressing those outside the plane. Our finding emphasizes the close relationship between the local structure of Co within the film and its magnetic properties.
The mechanisms of CO oxidation on the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide were studied by means of operando soft X-ray absorption spectroscopy. We found that Cu is the active metal, and that Cu(II) can be rapidly reduced to Cu(I) by CO when the temperature is larger than 130 °C. Co and Ni do not have any role in this respect. The Cu(II) oxidation state can be easily but slowly recovered by treating the sample in O2 at ca. 250 °C. However, it should be noted that CuO is readily and irreversibly reduced to Cu(I) if treated in CO at T>100 °C. Thus, the main conclusion of this work is that the high configurational entropy of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O stabilizes the rock-salt structure and permits the oxidation/reduction of Cu to be reversible, thus permitting the catalytic cycle to take place.
Chiral crystal YbNi3Ga9 is known as an intermediate valence compound in which a strong hybridization between the 4f orbitals and the conduction band is present. The Co-substitution to YbNi3Ga9 works as a hole doping that reduces the Kondo temperature and enhances the effective mass of itinerant charge carriers. Using angle-resolved photoelectron spectroscopy, the complex band structure of Yb(Ni1−xCox)3Ga9 (x=0,0.1) is revealed. A Yb2+ 4f7/2 band and evidences of hybridization to valence bands are found near the Fermi level. Both YbNi3Ga9 and the Co-substituted compound exhibit double hexagonal Fermi surfaces centered at the Γ¯-point, surrounded by a large snowflake-like surface, and a triangular electron-like surface along the Γ¯M¯ direction. By changing the incident photon energy, the band dispersion along the c-axis and the barrel-shaped Fermi surface is observed.
Implementation of in-situ and operando experimental set-ups for bridging the pressure gap in characterization techniques based on monitoring of photoelectron emission has made significant achievements at several beamlines at Elettra synchrotron facility. These set-ups are now operational and have been successfully used to address unsolved issues exploring events occurring at solid–gas, solid–liquid and solid-solid interfaces of functional materials. The sections in the article communicate the research opportunities offered by the current set-ups at APE, BACH, ESCAmicroscopy and Nanospectroscopy beamlines and outline the next steps to overcome the present limits.
We predict NiTe2 to be a type-II Dirac semimetal based on ab initio calculations and explore its bulk and spin-polarized surface states using spin- and angle-resolved photoemission spectroscopy (spin-ARPES). Our results show that, unlike PtTe2, PtSe2, and PdTe2, the Dirac node in NiTe2 is located in close vicinity to the Fermi energy. Additionally, NiTe2 also hosts a pair of band inversions below the Fermi level along the Γ−A high-symmetry direction, with one of them leading to a Dirac cone in the surface states. The bulk Dirac nodes and the ladder of band inversions in NiTe2 support unique topological surface states with chiral spin texture over a wide range of energies. Our work paves the way for the exploitation of the low-energy type-II Dirac fermions in NiTe2 in the fields of spintronics, infrared plasmonics, and ultrafast optoelectronics.
The tetragonal phase of chromium (III) oxide, although unstable in the bulk, can be synthesized in epitaxial heterostructures. Theoretical investigation by density-functional theory predicts an antiferromagnetic ground state for this compound. We demonstrate experimentally antiferromagnetism up to 40 K in ultrathin films of t−Cr2O3 by electrical measurements exploiting interface effect within a neighboring ultrathin Pt layer. We show that magnetotransport in Pt is affected by both spin-Hall magnetoresistance and magnetic proximity effect while we exclude any role of magnetism for the low-temperature resistance anomaly observed in Pt.
Palladium ditelluride (PdTe2) is a novel transition‐metal dichalcogenide exhibiting type‐II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface‐science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter‐wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ≈+12 kJ mol−1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub‐nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2‐based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2‐based millimeter‐wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2‐based high‐temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
Transparent conductive oxides are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent conductive electrodes in solar cells and interesting for optoelectronic and infrared-plasmonic applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, optoelectronic devices and energy-efficient solid-state lighting. In this work, the authors investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating by means of spectroscopic ellipsometry (SE). The authors investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering within a parallel-plane capacitor configuration. The authors address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in operando SE versus applied gate voltage.
The layered van der Waals antiferromagnet MnBi2Te4 has been predicted to combine the band ordering of archetypical topological insulators such as Bi2Te3 with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi2Te4(0001) single crystals by use of spin- and angle-resolved photoelectron spectroscopy experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.
Magnetism in monolayer (ML) VSe2 has attracted broad interest in spintronics, while existing reports have not reached consensus. Using element-specific X-ray magnetic circular dichroism, a magnetic transition in ML VSe2 has been demonstrated at the contamination-free interface between Co and VSe2. Through interfacial hybridization with a Co atomic overlayer, a magnetic moment of about 0.4 μB per V atom in ML VSe2 is revealed, approaching values predicted by previous theoretical calculations. Promotion of the ferromagnetism in ML VSe2 is accompanied by its antiferromagnetic coupling to Co and a reduction in the spin moment of Co. In comparison to the absence of this interface-induced ferromagnetism at the Fe/ML MoSe2 interface, these findings at the Co/ML VSe2 interface provide clear proof that the ML VSe2, initially with magnetic disorder, is on the verge of magnetic transition.
Monolayer VSe2, featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition‐metal dichalcogenides (2D‐TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X‐ray and angle‐resolved photoemission, and X‐ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T‐phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular‐beam epitaxy. Element‐specific X‐ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long‐range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic‐scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D‐TMDs in the search for exotic low‐dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.
Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were produced via hot-injection from metal chloride precursors. A systematic investigation of the influence of synthesis conditions on composition, size and microstructure of CZTS NCs is presented. The results show that the solvent amount (oleylamine) is a key parameter in the synthesis of this quaternary chalcogenide: a low solvent content leads to CZTS NCs with a prominent kesterite phase with the desired composition for use as absorber material in thin film photovoltaic cells. It is also observed that lowering the injection temperature (250 °C) favours formation of CZTS NCs in the wurtzite phase. The effect of different high temperature thermal treatments on the grain growth is also shown: large crystals are obtained with annealing in inert atmosphere, whereas nanocrystalline films are obtained introducing sulphur vapour during the heat treatment. A correlation between the grain dimension and the carbonaceous residues in the final films is investigated. It is shown that the grain growth is hindered by organic residues, amount and nature of which depend on the heat treatment atmosphere. In fact, oleylamine is removed by a complex pyrolytic process, which is affected by the presence of sulphur vapour. The latter favours the stability of oleylamine residuals against its non-oxidative release.
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface.
In order to enable the use of the prototypical 2D‐layered MoS2 for spintronics, its integration with ferromagnetic layers is mandatory. By employing interface‐sensitive 57Fe conversion electron Mössbauer spectroscopy (CEMS), hard X‐ray photoelectron spectroscopy (HAXPES), and transmission electron microscopy (TEM), the chemical, structural, and magnetic properties of the Fe/2D‐MoS2 interface are investigated. CEMS shows that out of the first 1 nm of Fe in direct contact with 2D‐MoS2, about half of the Fe atoms keeps the un‐perturbed Fe local environment, partly in regions where the original 2D‐layered structure of MoS2 is preserved as shown by TEM. The remaining reacting Fe atoms exclusively bond with Mo, with the majority of them being characterized by a ferromagnetic environment and the rest coordinating in a paramagnetic Fe‐Mo configuration. The preferential Fe bonding with Mo is corroborated by HAXPES analysis. The results provide detailed insight into the link between the bonding configuration and the interfacial magnetism at the Fe/2D‐MoS2 heterojunction.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
The superconducting properties of Sr1–xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1–xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/
BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the
BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.
PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.
Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the insertion of a two-dimensional magnetic oxide layer at the interface with the aim of both increasing the reproducibility of the interface preparation and offering a way for a further fine control over the electronic and magnetic properties. We have inserted a two-dimensional Cr4O5 layer at the C60/Fe(001) interface and have characterized the corresponding morphological, electronic, and magnetic properties. Scanning tunneling microscopy and electron diffraction show that the film grows well-ordered both in the monolayer and multilayer regimes. Electron spectroscopies confirm that hybridization of the electronic states occurs at the interface. Finally, magnetic dichroism in X-ray absorption shows an unprecedented spin-polarization of the hybridized fullerene states. The latter result is discussed also in light of an ab initio theoretical analysis.
The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films. Satellite peaks in O1s and modifications at the O K-edge allow the determination of the presence of H embedded in ZnO and the very low concentration of Zn vacancies and O interstitials in undoped ZnO. Contributions coming from substitutional and (above the solubility limit) interstitial Al atoms have been clearly identified and have been related to changes in the oxide stoichiometry and increased oxygen coordination, together with small lattice distortions. In this way defects and doping in oxide films can be controlled, in order to tune their properties and improve their performances.
In this work we investigated in detail the effects of nitric acid on the surface chemistry of two carbons, activated by steam and by phosphoric acid, meant to identify the nature and the concentration of the oxidized surface species. To this aim, the oxidized carbons were characterized by means of a large number of complementary techniques, including micro-Raman spectroscopy, N2 physisorption, Boehm titration method, 13C solid state nuclear magnetic resonance, X-ray photoelectron spectroscopy, diffuse reflectance infrared and inelastic neutron scattering spectroscopy. Carboxylic and carboxylate groups are mainly formed, the latter stabilized by the extended conjugation of the π electrons and being more abundant on small and irregular graphitic platelets. We demonstrated that the presence of oxygen-containing groups acts against the palladium dispersion and causes the appearance of an appreciable induction time in hydrogenation reactions. The carbon with more oxygenated surface species (and in particular more carboxylate groups) must be chosen in the hydrogenation of polar substrates, while it is detrimental to the hydrogenation of nonpolar substrates.
The role of trivalent rare-earth dopants on the cerium oxidation state has been systematically studied by in situ photoemission spectroscopy with synchrotron radiation for 10 mol % rare-earth doped epitaxial ceria films. It was found that dopant rare-earths with smaller ionic radius foster the formation of Ce3+ by releasing the stress strength induced by the cation substitution. With a decrease of the dopant ionic radius from La3+ to Yb3+, the out-of-plane axis parameter of the crystal lattice decreases without introducing macroscopic defects. The high crystal quality of our films allowed us to comparatively study both the ionic conductivity and surface reactivity ruling out the influence of structural defects. The measured increase in the activation energy of films and their enhanced surface reactivity can be explained in terms of the dopant ionic radius effects on the Ce4+ → Ce3+ reduction as a result of lattice relaxation. Such findings open new perspectives in designing ceria-based materials with tailored properties by choosing suitable cation substitution.
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique.
We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.
Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.
In search for dilute magnetic semiconductors, the magnetic properties at the atomic-scale of Fe atoms incorporated in ZnO, in a concentration range of more than five orders of magnitude from 1 × 10−5 to 2.2 at% have been probed using emission 57Fe Mössbauer spectroscopy on implanted 57Mn and 57Co produced at ISOLDE/CERN. In the ultra-dilute regime (10−5 at%), the system shows isolated paramagnetic Fe3+ ions with a spin–lattice type of relaxation. At higher concentrations (between 0.02 and 0.2 at%) a transition to spin–spin type of relaxation between neighboring Fe3+ is observed, without any signature of magnetic ordering up to 2.2 at%. Despite the many reports of dilute magnetism in 3d-doped ZnO, this atomic level study shows no evidence of any long-range magnetic ordering between isolated Fe atoms incorporated in the ZnO lattice.