The interplay of spin–orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.
Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy–momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.
Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and x-ray magnetic circular dichroism spectra acquired at the V $L_{2,3}$ edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+ ion due to the unbalanced hybridization between the vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the $t_{2g}^2$ ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn–Teller mechanism. Our results clarify the role of the distortion in VI3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity.
In this work, which follows Part I that is dedicated to the precatalyst, we investigate the electronic properties and the accessibility of the Ti active sites in a highly active silica-supported Ziegler–Natta catalyst for industrial polyethylene production, applying a multi-scale, multi-technique approach. Complementary electronic spectroscopies (i.e. Ti K-edge XANES, Ti L2,3-edge NEXAFS and DR UV–Vis-NIR) reveal the coexistence of several titanium phases, whose relative amount depends on the concentration of the alkyl aluminum activator. In addition to β-TiCl3-like clusters and monomeric Ti(IV) sites, which are already present in the precatalyst, isolated Ti(III) sites and α-TiCl3-like clusters are formed in the presence of the activator. Two families of alkylated Ti(III) sites characterized by a different electron density are detected by IR spectroscopy of adsorbed CO, and two types of Ti-acyl species are formed upon CO insertion into the Ti-alkyl bond, characterized by a different extent of η2-coordination. The whole set of data suggests that TiCl3 clusters are preferentially formed at the exterior of the catalyst particles, likely as a consequence of Ti(III) mobility in the presence of strong Lewis acids, in most cases hampering the spectroscopic detection of isolated Ti(III) sites. In contrast, only monomeric Ti(III) sites are formed at the interior of the catalyst particles, characterized by a high electron density evocative of the presence of electron donors in the close proximity (e.g. aluminum alkoxide by-products). These sites are less accessible because of diffusion limitations, and only become visible by surface-sensitive spectroscopic methods (such as Ti L2,3-edge TEY-NEXAFS) upon the fragmentation of the catalyst particles.
Infrared scattering-type scanning near-field optical microscopy (IR s-SNOM) and imaging is here exploited together with attenuated total reflection (ATR) IR imaging and scanning electron microscopy (SEM) to depict the chemical composition of fibers in hybrid electrospun meshes. The focus is on a recently developed bio-hybrid material for vascular tissue engineering applications, named Silkothane®, obtained in the form of nanofibrous matrices from the processing of a silk fibroin-polyurethane (SFPU) blend via electrospinning. Morphology and chemistry of single fibers, at both surface and subsurface level, have been successfully characterized with nanoscale resolution, taking advantage of the IR s-SNOM capability to portray the nanoscale depth profile of this modern material working at diverse harmonics of the signal. The applied methodology allowed to describe the superficial characteristics of the mesh up to a depth of about 100 nm, showing that SF and PU do not tend to co-aggregate to form hybrid fibers, at least at the length scale of hundreds of nanometers, and that subdomains other than the fibrillar ones can be present. More generally, in the present contribution, the depth profiling capabilities of IR s-SNOM, so far theoretically predicted and experimentally proven only on model systems, have been corroborated on a real material in its natural conditions with respect to production, opening the room for the exploitation of IR s-SNOM as valuable technique to support the production and the engineering of nanostructured materials by the precise understanding of their chemistry at the interface with the environment.
Transition metal dichalcogenides exhibit many fascinating properties including superconductivity, magnetic orders, and charge density wave. The combination of these features with a non-trivial band topology opens the possibility of additional exotic states such as Majorana fermions and quantum anomalous Hall effect. Here, we report on photon-energy and polarization dependent spin-resolved angle-resolved photoemission spectroscopy experiments on single crystal 1T-VSe2, revealing an unexpected band inversion and emergent Dirac nodal arc with spin-momentum locking. Density functional theory calculations suggest a surface lattice strain could be the driving mechanism for the topologically nontrivial electronic structure of 1T-VSe2.
Kagome materials have emerged as a setting for emergent electronic phenomena that encompass different aspects of symmetry and topology. It is debated whether the XV6Sn6 kagome family (where X is a rare-earth element), a recently discovered family of bilayer kagome metals, hosts a topologically non-trivial ground state resulting from the opening of spin–orbit coupling gaps. These states would carry a finite spin Berry curvature, and topological surface states. Here we investigate the spin and electronic structure of the XV6Sn6 kagome family. We obtain evidence for a finite spin Berry curvature contribution at the centre of the Brillouin zone, where the nearly flat band detaches from the dispersing Dirac band because of spin–orbit coupling. In addition, the spin Berry curvature is further investigated in the charge density wave regime of ScV6Sn6 and it is found to be robust against the onset of the temperature-driven ordered phase. Utilizing the sensitivity of angle-resolved photoemission spectroscopy to the spin and orbital angular momentum, our work unveils the spin Berry curvature of topological kagome metals and helps to define its spectroscopic fingerprint.
Magnesium chloride is a prototypical deliquescent material whose surface properties, although central for Ziegler–Natta cataysis, have so far remained elusive to experimental characterization. In this work, we use surface-selective X-ray absorption spectroscopy (XAS) at ambient pressure in combination with multivariate curve resolution, molecular dynamics, and XAS theoretical methods to track in real time and accurately describe the interaction between water vapor and the MgCl2 surface. By exposing MgCl2 to water vapor at temperatures between 595 and 391 K, we show that water is preferentially adsorbed on five-coordinated Mg2+ sites in an octahedral configuration, confirming previous theoretical predictions, and find that MgCl2 is capable of retaining a significant amount of adsorbed water even under prolonged heating to 595 K. As a consequence, our work provides first experimental insights into the unique surface affinity of MgCl2 for atmospheric water. The developed technique is proven highly sensitive to the modifications induced by adsorbates on a given low-Z metal based surface and may be useful in the toolbox required to disentangle the mechanisms of interfacial chemical processes.
In the search of low cost and more efficient electronic devices, here the properties of SrVO3 transparent conductor oxide (TCO) thin film are investigated, both visible-range optically transparent and highly conductive, it stands as a promising candidate to substitute the standard indium-tin-oxide (ITO) in applications. Its surface stability under water (both liquid and vapor) and other gaseous atmospheres is especially addressed. Through the use of spectroscopy characterizations, X-ray photoemission and operando X-ray absorption measurements, the formation of a thin Sr-rich V5+ layer located at the surface of the polycrystalline SrVO3 film with aging is observed, and for the first time how it can be removed from the surface by solvating in water atmosphere. The surface recovery is associated to an etching process, here spectroscopically characterized in operando conditions, allowing to follow the stoichiometric modification under reaction. Once exposed in oxygen atmosphere, the Sr-rich V5+ layer forms again. The findings improve the understanding of aging effects in perovskite oxides, allowing for the development of functionalized films in which it is possible to control or to avoid an insulating surface layer. This constitutes an important step towards the large-scale use of V-based TCOs, with possible implementations in oxide-based electronics.
VO2 is one of the most studied vanadium oxides because it undergoes a reversible metal-insulator transition (MIT) upon heating with a critical temperature of around 340 K. One of the most overlooked aspects of VO2 is the band’s anisotropy in the metallic phase when the Fermi level is crossed by two bands: π* and d||. They are oriented perpendicularly in one respect to the other, hence generating anisotropy. One of the parameters tuning MIT properties is the unbalance of the electron population of π* and d|| bands that arise from their different energy position with respect to the Fermi level. In systems with reduced dimensionality, the electron population disproportion is different with respect to the bulk leading to a different anisotropy. Investigating such a system with a band-selective spectroscopic tool is mandatory. In this manuscript, we show the results of the investigation of a single crystalline 8 nm VO2/TiO2(101) film. We report on the effectiveness of linearly polarized resonant photoemission (ResPES) as a band-selective technique probing the intrinsic anisotropy of VO2.
In the last decade, reducing the dimensionality of materials to few atomic layers thickness has allowed exploring new physical properties and functionalities otherwise absent out of the two dimensional limit. In this regime, interfaces and interlayers play a crucial role. Here, we investigate their influence on the electronic properties and structural quality of ultrathin Cr2O3 on Pt(111), in presence of a multidomain graphene intralayer. Specifically, by combining Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy and X-ray Absorption Spectroscopy, we confirm the growth of high-quality ultrathin Cr2O3 on bare Pt, with sharp surface reconstructions, proper stoichiometry and good electronic quality. Once a multidomain graphene intralayer is included at the metal/oxide interface, the Cr2O3 maintained its correct stoichiometry and a comparable electronic quality, even at the very first monolayers, despite the partially lost of the morphological long-range order. These results show how ultrathin Cr2O3 films are slightly affected by the interfacial epitaxial quality from the electronic point of view, making them potential candidates for graphene-integrated heterostructures.
We present CoTe2 as a type-II Dirac semimetal supporting Lorentz-symmetry violating Dirac fermions in the vicinity of the Fermi energy. By combining first-principles ab initio calculations with experimental angle-resolved photoemission spectroscopy results, we show CoTe2 hosts a pair of type-II Dirac fermions around 90 meV above the Fermi energy. In addition to the bulk Dirac fermions, we find several topological band inversions in bulk CoTe2, which gives rise to a ladder of spin-polarized surface states over a wide range of energies. In contrast to the surface states which typically display Rashba-type in-plane spin splitting, we find that CoTe2 hosts interesting out-of-plane spin polarization as well. Our work establishes CoTe2 as a potential candidate for the exploration of Dirac fermiology and applications in spintronic devices, infrared plasmonics, and ultrafast optoelectronics.
Hydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution transmission electron microscopy. We discovered that the catalytic reaction is driven by surface tin-oxide phases, which protects the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
V2O3 presents a complex interrelationship between the metal–insulator transition and the structural rhombohedral-monoclinic one in temperature, as a function of sample thickness. Whilst in bulk V2O3 the two transitions coincide on the temperature scale, at 15 nm thickness a fully independent Mott-like transition occurs at lower temperature, with no corresponding structural changes perhaps related to epitaxial strain. It is therefore of relevance to investigate the thin and ultrathin film growth to pinpoint the chemical, electronic and structural phase phenomenology and the role of the interface with the substrate. Here we present results on the thickness dependent properties of V2O3 from 1 nm up to 40 nm thick as grown on c-plane Al2O3 substrates by exploiting variable sampling depth probes. The surface morphology of stoichiometric ultra-thin V2O3 layers evolves from islands-like to continuous flat film with thickness, with implications on the overall properties.
Given the urgency of achieving the forthcoming zero emission targets, the research of green fuels and efficient catalysts able to easily convert them in other valuable compounds is fundamental. The work presented in this thesis is focused on the application of an innovative spectroscopic technique, the operando Soft X-Rays NEXAFS spectroscopy, in order to investigate the surface reactivity of heterogeneous catalysts. In fact, it is well known the importance that operando characterizations have acquired in recent years, allowing to study a material at its working conditions. Since the technique requires the use of Synchrotron Radiation and a specific experimental setup, all the measurements reported in this thesis have been performed exploiting a home made reaction cell developed at the APE-HE beamline, at Elettra Synchrotron (Trieste). In this thesis work, we investigated the possibility of coupling the operando NEXAFS technique with other in situ spectroscopies, together with standard ex situ characterizations and computational simulations. This multitechnique approach allowed to extract the maximum potential of the technique, addressing its role as a key tool in the optic of speeding up the design of efficient heterogeneous catalysts.
The catalytic reactions investigated in this thesis are focused on methanol valorization, given its great potential in numerous applications related to the energy transition. In detail, we focused our first investigation on methanol production through the direct partial oxidation of methane, catalysed by a CeO2/CuO composite synthesized using a scalable and green milling process. We exploited the combination of in situ DRIFT and operando Soft X-Ray NEXAFS spectroscopies to monitor at the same time the electronic structure modifications occurring at the catalyst surface and the adsorbates evolution during the different reaction steps.
The operando analysis of the Cu L2,3 and Ce M4,5 edges during the catalyst thermal activation allowed us to detect a charge transfer from Ce3+ surface sites to Cu2+ atoms, resulting in the formation of reactive sites close to the CeO2/CuO interface. When the sample was exposed to CH4 at 250°C and at a pressure of 1 bar, a Cu2+ → Cu+ reduction was observed, indicating that the catalyst is able to activate the methane molecule. At the same time, DRIFT spectra shown the formation of methoxy and formate species, that are products of methane activation on the surface. Adding an oxidizing agent (O2), Cu+ sites were re-oxidized to Cu2+, together with the disappearing of the methoxy and formate related structures in the DRIFT spectra. The results indicated the reversibility of the chemical modifications occurring at the catalyst surface. During the operando NEXAFS experiment, the reaction products were monitored with an online micro-GC: the main products observed during the reaction were CO2, H2O, CH2O and CH3OH, indicating that total and partial oxidation of methane were occurring. As a comparison, an equivalent experiment has been conducted on a similar CeO2/CuO catalyst synthetized with a conventional impregnation method. In this case, no spectroscopic modification were observed with both NEXAFS and DRIFT techniques, confirming that the synthetic method used is crucial in creating specific active sites for methane activation and oxidation. The experimental results have been validated through DFT calculations, which confirmed that when CuO and CeO2 surfaces merge during the synthesis, a net charge transfer from Ce to Cu atoms occurs in proximity of the CeO2 − CuO interface. Another promising route to valorize methanol is represented by its catalytic decomposition to syngas mixture (H2 + CO), whose reaction mechanism was investigated in the second part of the thesis. Indeed, one major challenge for this reaction is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. In the present study, we illustrate a surface reactivity study of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory (DFT), operando NEXAFS at ambient pressure, in situ XPS and high-resolution transmission electron microscopy (HR-TEM). For Ni3Sn4, we discovered that the catalytic reaction is driven by surface tin-oxide phases, able to protect the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, exploiting the online micro-GC connected to the operando NEXAFS reaction cell and by comparing the results with a Ni3Sn2 compound, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Universit`a degli Studi di Milano, that has been carried out since November 2019 at the Istituto Officina dei Materiali of the Consiglio Nazionale delle Ricerche (IOM-CNR) in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures and in the framework of the NFFA facility.
My experimental activity employed complementary spectroscopy and polarimetry techniques oriented to address the characterisation of electronic and spin properties of systems with decreasing dimensionality. This programme has been conducted by exploiting state-of-the-art infrastructures to generate visible, UV and EUV ultrashort pulses (tabletop lasers and HHG at NFFA-SPRINT laboratory) and soft X-ray synchrotron light (at Elettra, Diamond and ESRF synchrotron light sources).
I used photoemission as the main tool in my investigation, supplementing my results with absorption spectroscopy. I focused on three materials, Fe(001)-p(1x1)O/MgO, EuSn2P2 and VI3, of high interest in modern and next-generation magnetic devices.
In the three systems I studied the electronic band structure to identify key features hinting at the bound electrons behaviour. I investigated the properties of the magnetically ordered phases and found evidence of the reduced dimensionality in the emergence of atypical spin ordering and the increasingly manifest electron correlation phenomena.
The information retained by band electrons is critical to access the spin polarisation of the bands and to give insight into the effects of spatial confinement on the spin degree of freedom.
The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O3-0.4PbTiO3 (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.
MOFs or Metal Organic Frameworks are relatively new organic-inorganic hybrid materials that consist of a regular array of positive metal ions connected by organic 'linker' molecules to create a periodic and crystalline structure.
They have been widely studied in the last past two decades for their promising properties (such as porosity, gas adsorption and storage, flexibility/rigidness, low density…) and chemical tunability.
It is well-known that all the phases of the manufacturing influence the extraordinary aesthetic and acoustic features of Stradivari’s instruments. However, these masterpieces still keep some of their secrets hidden by the lack of documentary evidence. In particular, there is not a general consensus on the use of a protein-based ground coating directly spread on the wood surface by the Cremonese Master. The present work demonstrates that infrared scattering-type scanning near-fields optical microscopy (s-SNOM) may provide unprecedented information on very complex cross-sectioned microsamples collected from two of Stradivari’s violins, nanoresolved chemical sensitivity being the turning point for detecting minute traces of a specific compound, namely proteins, hidden by the matrix when macro or micro sampling approaches are exploited. This nanoresolved chemical-sensitive technique contributed new and robust evidence to the long-debated question about the use of proteinaceous materials by Stradivari.
The generation and control of surface acoustic waves (SAWs) in a magnetic material are objects of an intense research effort focused on magnetoelastic properties, with fruitful ramifications in spin-wave-based quantum logic and magnonics. We implement a transient grating setup to optically generate SAWs also seeding coherent spin waves via magnetoelastic coupling in ferromagnetic media. In this work we report on SAW-driven ferromagnetic resonance (FMR) experiments performed on polycrystalline Ni thin films in combination with time-resolved Faraday polarimetry, which allows extraction of the value of the effective magnetization and of the Gilbert damping. The results are in full agreement with measurements on the very same samples from standard FMR. Higher-order effects due to parametric modulation of the magnetization dynamics, such as down-conversion, up-conversion, and frequency mixing, are observed, testifying the high sensitivity of this technique.
Two-dimensional van der Waals magnetic semiconductors display emergent chemical and physical properties and hold promise for novel optical, electronic and magnetic “few-layers” functionalities. Transition-metal iodides such as CrI3 and VI3 are relevant for future electronic and spintronic applications; however, detailed experimental information on their ground state electronic properties is lacking often due to their challenging chemical environment. By combining X-ray electron spectroscopies and first-principles calculations, we report a complete determination of CrI3 and VI3 electronic ground states. We show that the transition metal-induced orbital filling drives the stabilization of distinct electronic phases: a wide bandgap in CrI3 and a Mott insulating state in VI3. Comparison of surface-sensitive (angular-resolved photoemission spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) measurements in VI3 reveals a surface-only V2+ oxidation state, suggesting that ground state electronic properties are strongly influenced by dimensionality effects. Our results have direct implications in band engineering and layer-dependent properties of two-dimensional systems.
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide–water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
Space and mirror charge effects in time-resolved photoemission spectroscopy can be modeled to obtain relevant information on the recombination dynamics of charge carriers. We successfully extracted from these phenomena the reneutralization characteristic time of positive charges generated by photoexcitation in CeO2-based films. For the above-band-gap excitation, a large fraction of positive carriers with a lifetime that exceeds 100 ps are generated. Otherwise, the sub-band-gap excitation induces the formation of a significantly smaller fraction of charges with lifetimes of tens of picoseconds, ascribed to the excitation of defect sites or to multiphoton absorption. When the oxide is combined with Ag nanoparticles, the sub-band-gap excitation of localized surface plasmon resonances leads to reneutralization times longer than 300 ps. This was interpreted by considering the electronic unbalance at the surface of the nanoparticles generated by the injection of electrons, via localized surface plasmon resonance (LSPR) decay, into CeO2. This study represents an example of how to exploit the space charge effect in gaining access to the surface carrier dynamics in CeO2 within the picosecond range of time, which is fundamental to describe the photocatalytic processes.
Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal–insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal–insulator transition by implementing V2O3 thin films in devices.
This work presents an original approach to preparing pure and Ni-doped CeO2 nanoparticles (NPs) that can be directly drop-casted on a substrate or calcined to form powders. The reduction of the NPs in H2 is very different than the one usually anticipated for supported Ni–CeO2 catalysts. In situ soft X-ray absorption and infrared spectroscopies revealed that the reduction of Ce4+ into Ce3+ in H2 proceeds via simultaneous oxidation of Ni2+ ions into Niδ+ (2<δ<3). Comparison with reference samples indicates that Ce4+ ions reduction is promoted over Ni-doped CeO2 NPs, whereas that of Ni2+ is hindered. Theoretical simulation of Ni L-edge spectra suggested that Ni dopant into ceria is in a square planar four-coordinate environment, in contrast to the familiar octahedral symmetry of bulk nickel oxides. Our results reveal that the surface chemistry of Ni-doped CeO2 is quite distinct as compared to that of the individual bulk oxides, which potentially can lead to a different performance of this material, notably in catalytic applications.
The ever-growing demand for Li-ion batteries requires high-capacity electrode materials that should also be environmentally benign, Co-free, secure and durable, to achieve an optimal compromise between sustainability and functional performances. Spinel LiMn2O4 (LMO) is a state-of-the-art material, which, in principle, could satisfy such requirements. However, an undesired cubic-tetragonal phase transition favors Jahn-Teller (J-T) spinel distortion, leading to severe capacity reduction upon cycling below 3 V. Here, we propose a novel dual-doping strategy for LMO, based on the partial substitution of Mn(III) with Fe(III) and Ti(IV) to design new active materials for high-capacity cathodes, namely LiFexMn2-x-yTiyO4 (LFMT), with Li/Mn ratio ranging between 1 and 1.7. The substitution of Mn with Fe and Ti suppresses the J-T distortion, which is often still evident in the case of Ti-doped LMO. This allows cycling in a wider voltage range (4.8-1.5 V), thus resulting in higher capacity and significantly improved stability. The lithiation mechanisms were investigated by combining ex-situ X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS analyses). It demonstrated that the only redox-active metal is Mn, while Fe and Ti are electrochemically inactive. The extensive electrochemical lithiation/delithiation of the LFMT compositions brought to unprecedented results, which give evidence of stabilizing cation disorder through the formation of Mn-rich and Mn-poor domains, which leades to two spinel phases with different Mn:Ti ratios. These insights into the lithiation mechanism pave the way for a better understanding of the doping chemistry and electrochemistry of Mn-based spinels as cathode materials for Li-ion batteries.
The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1–xSrxMnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.
The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.
We report the integration of high-quality epitaxial La2/3Sr1/3MnO3 (LSMO) thin films onto SrTiO3 buffered Silicon-on-Sapphire (SOS) substrates by combining state-of-the-art thin film growth techniques such as molecular beam epitaxy and pulsed laser deposition. Detailed structural, magnetic and electrical characterizations of the LSMO/STO/SOS heterostructures show that the LSMO film properties are competitive with those directly grown on oxide substrates. X-ray magnetic circular dichroism measurements on Mn L2,3 edges show strong dichroic signal at room temperature, and angular-dependent in-plane magnetic properties by magneto-optical Kerr magnetometry reveal isotropic magnetic anisotropy. Suspended micro-bridges were thus finally fabricated by silicon micromachining, thus demonstrating the potential use of integrating LSMO magnetic layer on industrially compatible SOS substrates for the development of applicative MEMS devices.
The occurrence of oxygen-driven metal–insulator-transition (MIT) in SrNbO3 (SNO) thin films epitaxially grown on (110)-oriented DyScO3 has been reported. SNO films are fabricated by the pulsed laser deposition technique at different partial O2 pressure to vary the oxygen content and their structural, optical, and transport properties are probed. SNO unit cell has been found to shrink vertically as the oxygen content increases but keeping the epitaxial matching with the substrate. The results of Fourier-transform infra-red spectroscopy show that highly oxygenated SNO samples (i.e., grown at high oxygen pressure) show distinct optical conductivity behavior with respect to oxygen deficient films, hence demonstrating the insulating character of the formers with respect to those fabricated with lower pressure conditions. Tailoring the optical absorption and conductivity of strontium niobate epitaxial films across the MIT will favor novel applications of this material.
Here, we discuss the key features of electrocatalysis with mitrofanovite (Pt3Te4), a recently discovered mineral with superb performances in hydrogen evolution reaction. Mitrofanovite is a layered topological metal with spin-polarized topological surface states with potential applications for spintronics. However, mitrofanovite is also an exceptional platform for electrocatalysis, with costs of the electrodes suppressed by 47% owing to the partial replacement of Pt with Te. Remarkably, the Tafel slope in nanostructured mitrofanovite is just 33 mV/dec, while reduced mitrofanovite has the same Tafel slope (36 mV/dec) as state-of-the-art electrodes of pure Pt. Mitrofanovite also affords surface stability and robustness to CO poisoning. Accordingly, these findings pave the way for the advent of mitrofanovite for large-scale hydrogen production.
V2O3 has long been studied as a prototypical strongly correlated material. The difficulty in obtaining clean, well ordered surfaces, however, hindered the use of surface sensitive techniques to study its electronic structure. Here we show by means of X-ray diffraction and electrical transport that thin films prepared by pulsed laser deposition can reproduce the functionality of bulk V2O3. The same films, when transferred in-situ, show an excellent surface quality as indicated by scanning tunnelling microscopy and low energy electron diffraction, representing a viable approach to study the metal-insulator transition in V2O3 by means of angle-resolved photoemission spectroscopy. Combined, these two aspects pave the way for the use of V2O3 thin films in device-oriented heterostructures.
We unravel the interplay of topological properties and the layered (anti)ferromagnetic ordering in EuSn2P2, using spin and chemical selective electron and X-ray spectroscopies supported by first-principle calculations. We reveal the presence of in-plane long-range ferromagnetic order triggering topological invariants and resulting in the multiple protection of topological Dirac states. We provide clear evidence that layer-dependent spin-momentum locking coexists with ferromagnetism in this material, a cohabitation that promotes EuSn2P2 as a prime candidate axion insulator for topological antiferromagnetic spintronics applications.
High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO+1/2 O2 at 250 °C, CO2 is produced while bidentante carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorbtion geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft XAS together with the developed data analysis work-flow may be beneficial to characterize often elusive surface properties of systems of catalytic interest.
Single crystals of the hexagonal triangular lattice compound AgCrSe2 have been grown by chemical vapor transport. The crystals have been carefully characterized and studied by magnetic susceptibility, magnetization, specific heat, and thermal expansion. In addition, we used Cr-electron spin resonance and neutron diffraction to probe the Cr 3d3 magnetism microscopically. To obtain the electronic density of states, we employed x-ray absorption and resonant photoemission spectroscopy in combination with density functional theory calculations. Our studies evidence an anisotropic magnetic order below TN=32K. Susceptibility data in small fields of about 1 T reveal an antiferromagnetic (AFM) type of order for H⊥c, whereas for H∥c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H⊥c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+=5T, which is absent for H∥c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fanlike arrangement above H+. A fully ferromagnetically polarized state is obtained above the saturation field of H⊥S=23.7T at 2 K with a magnetization of Ms=2.8μB/Cr. For H∥c, M(H) monotonically increases and saturates at the same Ms value at H∥S=25.1T at 4.2 K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T∗=45K, which is a clear fingerprint of short range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possibly related to the noncentrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen-based delafossites, can be tuned by relatively small, experimentally accessible magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.
Topological materials are a promising platform for a wide range of next-generation technologies. In article number 2100063, Antonio Politano, Salvador Barraza-Lopez, Jin Hu and co-workers report a new topological material, SmSbTe, displaying a coexistence of magnetism, enhanced electronic correlations, and Dirac fermions, as illustrated in the cover image. This discovery suggests that SmSbTe represents an ideal platform for exotic quantum phenomena arising from the interplay between degrees of freedom. The manipulation of these phenomena would further pave a path for quantum material-based functional devices.
The emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics.
In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal–organic framework HKUST-1. We obtained direct evidence that Cu+ defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+ dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+ paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2 may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+ sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+ complexes and their reversible restoration upon exposure to gaseous CO2.
Due to their peculiar quasiparticle excitations, topological metals have high potential for applications in the fields of spintronics, catalysis, and superconductivity. Here, by combining spin- and angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory, we discover surface-termination-dependent topological electronic states in the recently discovered mitrofanovite Pt3Te4. Mitrofanovite crystal is formed by alternating, van der Waals bound layers of Pt2Te2 and PtTe2. Our results demonstrate that mitrofanovite is a topological metal with termination-dependent (i) electronic band structure and (ii) spin texture. Despite their distinct electronic character, both surface terminations are characterized by electronic states exhibiting strong spin polarization with a node at the Γ point and sign reversal across the Γ point, indicating their topological nature and the possibility of realizing two distinct electronic configurations (both of them with topological features) on the surface of the same material.
Composite multiferroics containing ferroelectric and ferromagnetic components often have much larger magnetoelectric coupling compared to their single-phase counterparts. Doped or alloyed HfO2-based ferroelectrics may serve as a promising component in composite multiferroic structures potentially feasible for technological applications. Recently, a strong charge-mediated magnetoelectric coupling at the Ni/HfO2 interface has been predicted using density functional theory calculations. Here, we report on the experimental evidence of such magnetoelectric coupling at the Ni/Hf0.5Zr0.5O2(HZO) interface. Using a combination of operando XAS/XMCD and HAXPES/MCDAD techniques, we probe element-selectively the local magnetic properties at the Ni/HZO interface in functional Au/Co/Ni/HZO/W capacitors and demonstrate clear evidence of the ferroelectric polarization effect on the magnetic response of a nanometer-thick Ni marker layer. The observed magnetoelectric effect and the electronic band lineup of the Ni/HZO interface are interpreted based on the results of our theoretical modeling. It elucidates the critical role of an ultrathin NiO interlayer, which controls the sign of the magnetoelectric effect as well as provides a realistic band offset at the Ni/HZO interface, in agreement with the experiment. Our results hold promise for the use of ferroelectric HfO2-based composite multiferroics for the design of multifunctional devices compatible with modern semiconductor technology.
Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, BaNiS2, through Co/Ni substitution. The symmetry and chemical characteristics of this material, combined with the modification of the charge-transfer gap of BaCo1−xNixS2 across its phase diagram, lead to the formation of Dirac lines, whose position in k-space can be displaced along the Γ−M symmetry direction and their form reshaped. Not only does the doping x tailor the location and shape of the Dirac bands, but it also controls the metal-insulator transition in the same compound, making BaCo1−xNixS2 a model system to functionalize Dirac materials by varying the strength of electron correlations.
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal-line fermions. In this material family, the LnSbTe (Ln = lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal-line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
Although Ziegler–Natta (ZN) catalysts play a major role in the polyolefin market, a true understanding of their properties at the molecular level is still missing. In particular, there is a lack of knowledge on the electronic properties of Ti sites. Theoretical calculations predict that the electron density of the Ti sites in the precatalysts correlates with the activation energy for olefin insertion in the Ti-alkyl bond generated at these sites after activation by Al-alkyls. It is also well known that the effective charge on the Ti sites in the activated catalysts affects the olefin π-complexation. In this contribution, we exploit two electronic spectroscopies, UV–vis and Ti L2,3-edge near-edge X-ray absorption fine structure (NEXAFS), complemented with theoretical simulation to investigate three ZN precatalysts of increasing complexity (up to an industrial system) and the corresponding catalysts activated by triethylaluminum (TEAl). We provide compelling evidence for the presence of monomeric 6-fold-coordinated Ti4+ species in all of the precatalysts, which however differ in the effective charge on the Ti sites. We also unambiguously demonstrate that these sites are reduced by TEAl to two types of monomeric 5-coordinated Ti3+, either alkylated or not, and that the former are involved in ethylene polymerization. In addition, small TiCl3 clusters are formed in the industrial catalyst, likely due to the occurrence of severe reducing conditions within the catalyst pores. These data prove the potential of these two techniques, coupled with simulation, in providing an accurate description of the electronic properties of heterogeneous ZN catalysts.
We investigated the relationship between ferromagnetism and metallicity in strained La0.67Ca0.33MnO3 films grown on lattice-mismatched NdGaO3 (001) by means of spectroscopic techniques directly sensitive to the ferromagnetic state, to the band structure, and to the chemical state of the atoms. In this system, the ferromagnetic metallic (FMM) phase spatially coexists with an insulating one in most of the phase diagram. First, the observation of an almost 100% spin polarization of the photoelectrons at the Fermi level in the fundamental state provides direct evidence of the half-metallicity of the FMM phase, a result that has been previously observed through direct probing of the valence band only on unstrained, phase-homogeneous La0.67Sr0.33MnO3. Second, the spin polarization results to be correlated with the occupancy at the Fermi level for all the investigated temperature regimes. These outcomes show that the half-metallic behavior predicted by a double-exchange model persists even in phase-separated manganites. Moreover, the correlation between metallicity and ferromagnetic alignment is confirmed by X-ray magnetic circular dichroism, a more bulk-sensitive technique, allowing one to explain transport properties in terms of the conduction through aligned FMM domains.
Probing the energy and spin electron properties of materials by means of photoemission spectroscopy gives insights into the low-energy phenomena of matter driven by spin orbit coupling or exchange interaction. The information that can be derived from complete photoelectron spectroscopy experiments, beyond E(k), is contained in the photoemission transition matrix elements that determine peak intensities. We present here a complete photoemission study of the spin-polarized bands of 2H−NbSe2, a material that presents a surface spin-texture. Circular dichroism in angular-resolved photoemission spectroscopy (CD-ARPES) data are compared with spin-polarized angular-resolved spectra (SARPES) as measured with linearly polarized radiation in a well-characterized experimental chirality, at selected photon energy values. CD-ARPES is due to a matrix element effect that depends strongly on photon energy and experimental geometry: we show that it cannot be used to infer intrinsic spin properties in 2H−NbSe2. On the other hand, SARPES data provide reliable direct information on the spin properties of the electron states. The results on 2H−NbSe2 are discussed, and general methodological conclusions are drawn on the best experimental approach to the determination of the spin texture of quantum materials.
Dirac semimetals are classified into different phases based on the types of Dirac fermions. Tuning the transition among different types of Dirac fermions in one system remains a challenge. Recently, KMgBi was predicted to be located at a critical state in which various types of Dirac fermions can be induced owing to the existence of a flatband. Here, we carried out systematic studies on the electronic structure of KMgBi single crystals by combining angle-resolve photoemission spectroscopy and scanning tunneling microscopy/spectroscopy. The flatband was clearly observed near the Fermi level. We also revealed a small bandgap of ∼20 meV between the flatband and the conduction band. These results demonstrate the critical states of KMgBi that transition among various types of Dirac fermions can be tuned in one system.
Materials and heterostructures that exhibit coupling between elastic and magnetic degrees of freedom are of both fundamental and technological interest. In particular, they have great potential for novel energy-efficient spintronic devices because acoustic waves can generate coherent and long-living spin waves through inverse magnetostriction, which consists in variations in the magnetization due to lattice deformations. As optical methods are versatile, non-invasive and contactless, an all-optical approach has been implemented and applied to study magnetoelastic coupling in a ferromagnetic film on a glass substrate.
The present thesis work was performed at the NFFA-SPRINT facility of IOM-CNR in the Fermi@Elettra hall at Trieste, where I actively contributed to the realization and characterization of an all new experimental setup which is able to combine transient grating spectroscopy with a time-resolved Faraday polarimetry.
The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.
Chirality and magnetism of molecules are two properties that in the last years raised notable interest for the development of novel molecular devices. Chiral helicenes combine these functionalities, and their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel assembling strategy to deposit a sub‐monolayer of enantiopure thia[4]helicene radical cations on a pre‐functionalized Au(111) substrate permitting the persistence of both the paramagnetic character and chirality of these molecules at the nanoscale. In‐house characterizations demonstrated the retention of the chemical and paramagnetic properties after the deposition process. Furthermore, synchrotron‐based X‐ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.
The growing demand for innovative means in biomedical, therapeutic and diagnostic sciences has led to the development of nanomedicine. In this context, naturally occurring tubular nanostructures composed of rolled sheets of alumino-silicates, known as halloysite nanotubes, have found wide application. Halloysite nanotubes indeed have surface properties that favor the selective loading of biomolecules. Here, we present the first, to our knowledge, structural study of DNA-decorated halloysite nanotubes, carried out with nanometric spatially-resolved infrared spectroscopy. Single nanotube absorption measurements indicate a partial covering of halloysite by DNA molecules, which show significant structural modifications taking place upon loading. The present study highlights the constraints for the use of nanostructured clays as DNA carriers and demonstrates the power of super-resolved infrared spectroscopy as an effective and versatile tool for the evaluation of immobilization processes in the context of drug delivery and gene transfer.
Preferential oxidation of CO (COPrOx) is a catalytic reaction targeting the removal of trace amounts of CO from hydrogen-rich gas mixtures. Non-noble metal catalysts, such as Cu and Co, can be equally active to Pt for the reaction; however, their commercialization is limited by their poor stability. We have recently shown that CoO is the most active state of cobalt for COPrOx, but under certain reaction conditions, it is readily oxidized to Co3O4 and deactivates. Here, we report a simple method to stabilize the Co2+ state by vanadium addition. The V-promoted cobalt catalyst exhibits considerably higher activity and stability than pure cobalt. The nature of the catalytic active sites during COPrOx was established by operando NAP-XPS and NEXAFS, while the stability of the Co2+ state on the surface was verified by in situ NEXAFS at 1 bar pressure. The active phase consists of an ultra-thin cobalt-vanadate surface layer, containing tetrahedral V5+ and octahedral Co2+ cations, with an electronic and geometric structure that is deviating from the standard mixed bulk oxides. In addition, V addition helps to maintain the population of Co2+ species involved in the reaction, inhibiting carbonate species formation that are responsible for the deactivation. The promoting effect of V is discussed in terms of enhancement of CoO redox stability on the surface induced by electronic and structural modifications. These results demonstrate that V-promoted cobalt is a promising COPrOx catalyst and validate the application of in situ spectroscopy to provide the concept for designing better performing catalysts.
Quantum materials are central for the development of novel functional systems that are often based on interface specific phenomena. Fabricating controlled interfaces between quantum materials requires adopting a flexible growth technique capable to synthesize different materials within a single-run deposition process with high control of structure, stoichiometry, and termination. Among the various available thin film growth technologies, pulsed laser deposition (PLD) allows controlling the growth of diverse materials at the level of single atomic layers. In PLD the atomic species are supplied through an ablation process of a stoichiometric target either in form of polycrystalline powders or of a single crystal. No carrier gases are needed in the deposition process. The ablation process is compatible with a wide range of background pressure. We present results of thin-film growth by PLD obtained by using an Nd:YAG infrared pulsed laser source operating at its first harmonics. With respect to the traditional PLD systems—based on excimer KrF UV-lasers—optimal conditions for the growth of thin films and heterostructures are reached at large target-to-substrate distance. Merits and limitations of this approach for growing oxide and non-oxide thin films are discussed. The merits of an Nd:YAG laser to grow very high-quality thin films suggest the possibility of implementing compact in-situ setups e.g. integrated with analytical instrumentation under ultra-high vacuum conditions.
We report on the electronic properties of an artificial system obtained by the intercalation of equiatomic FeCo layers under graphene grownon Ir(111). Upon intercalation, the FeCo film grows epitaxially on Ir(111), resulting in a lattice-mismatched system. By performing densityfunctional theory calculations, we show that the intercalated FeCo layer leads to a pronounced corrugation of the graphene film. At the sametime, the FeCo intercalated layers induce a clear transition from a nearly undisturbed to a strongly hybridized graphenep-band, as measuredby angle-resolved photoemission spectroscopy. A comparison of experimental results with the computed band structure and the projecteddensity of states unveils a spin-selective hybridization between thepband of graphene and FeCo-3dstates. Our results demonstrate that thereduced dimensionality, as well as the hybridization within the FeCo layers, induces a narrowing and a clear splitting of Fe 3d-up and Fe3d-down-spin bands of the confined FeCo layers with respect to bulk Fe and Co.
In non-magnetic materials the combination of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC) determines the spin polarization of the band structure. However, a local spin polarization can also arise in centrosymmetric crystals containing ISB subunits. This is namely the case for the nodal-line semimetal ZrSiTe where, by combining spin- and angle-resolved photoelectron spectroscopy with ab initio band structure calculations, we reveal a complex spin polarization. In the bulk, the valence and conduction bands exhibit opposite spin orientations in two spatially separated two-dimensional ZrTe sectors within the unit cell, yielding no net polarization. We also observe spin-polarized surface states that are well separated in energy and momentum from the bulk bands. A layer-by-layer analysis of the spin polarization allows us to unveil the complex evolution of the signal in the bulk states near the surface, thus bringing the intertwined nature of surface and bulk effects to the fore.
The advent of topological semimetals enables the exploitation of symmetry-protected
topological phenomena and quantized transport. Here, we present homogeneous rectifiers,
converting high-frequency electromagnetic energy into direct current, based on low-energy
Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the
first implementation. Explicitly, these devices display room-temperature photosensitivity as
high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of
22, originating from the interplay between the spin-polarized surface and bulk states. Device
performances in terms of broadband operation, high dynamic range, as well as their high
sensitivity, validate the immense potential and unique advantages associated to the control of
nonequilibrium gapless topological states via built-in electric field, electromagnetic polar-
ization and symmetry breaking in topological semimetals. These findings pave the way for the
exploitation of topological phase of matter for high-frequency operations in polarization-
sensitive sensing, communications and imaging.
The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal “hidden” spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.
We explored the properties of the quasi-binary Bi2Se3-Bi2S3 system over a wide compositional range. X-ray diffraction analysis demonstrates that rhombohedral crystals can be synthesized within the solid solution interval 0-22 mol% Bi2S3, while at 33 mol% Bi2S3 only orthorhombic crystals are obtained. Core level photoemission spectroscopy reveals the presence of Bi3+, Se2- and S2- species and the absence of metallic species, thus indicating that S incorporation into Bi2Se3 proceeds prevalently through the substitution of Se with S. Spin- and angle-resolved photoemission spectroscopy shows that topological surface states develop on the surfaces of the Bi2Se3-ySy (y <= 0.66) rhombohedral crystals, in close analogy with the prototypical case of Bi2Se3, while the orthorhombic crystals with higher S content turn out to be trivial semiconductors. Our results connect unambiguously the phase diagram and electronic properties of the Bi2Se3-Bi2S3 system.
Research on ultrathin quantum materials requires full control of the growth and surface quality of the specimens in order to perform experiments on their atomic structure and electron states leading to ultimate analysis of their intrinsic properties. We report results on epitaxial FeSe thin films grown by pulsed laser deposition (PLD) on CaF2 (001) substrates as obtained by exploiting the advantages of an all-in-situ ultra-high vacuum (UHV) laboratory allowing for direct high-resolution surface analysis by scanning tunnelling microscopy (STM), synchrotron radiation X-ray photoelectron spectroscopy (XPS) and angle-resolved photoemission spectroscopy (ARPES) on fresh surfaces. FeSe PLD growth protocols were fine-tuned by optimizing target-to-substrate distance d and ablation frequency, atomically flat terraces with unit-cell step heights are obtained, overcoming the spiral morphology often observed by others. In-situ ARPES with linearly polarized horizontal and vertical radiation shows hole-like and electron-like pockets at the Γ and M points of the Fermi surface, consistent with previous observations on cleaved single crystal surfaces. The control achieved in growing quantum materials with volatile elements such as Se by in-situ PLD makes it possible to address the fine analysis of the surfaces by in-situ ARPES and XPS. The study opens wide avenues for the PLD based heterostructures as work-bench for the understanding of proximity-driven effects and for the development of prospective devices based on combinations of quantum materials.
Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden–Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden–Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden–Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.
Solid oxide photoelectrochemical cells (SOPECs) with inorganic ion-conducting electrolytes provide an alternative solution for light harvesting and conversion. Exploring potential photoelectrodes for SOPECs and understanding their operation mechanisms are crucial for continuously developing this technology. Here, ceria-based thin films were newly explored as photoelectrodes for SOPEC applications. It was found that the photoresponse of ceria-based thin films can be tuned both by Sm-doping-induced defects and by the heating temperature of SOPECs. The whole process was found to depend on the surface electrochemical redox reactions synergistically with the bulk photoelectric effect. Samarium doping level can selectively switch the open-circuit voltages polarity of SOPECs under illumination, thus shifting the potential of photoelectrodes and changing their photoresponse. The role of defect chemistry engineering in determining such a photoelectrochemical process was discussed. Transient absorption and X-ray photoemission spectroscopies, together with the state-of-the-art in operando X-ray absorption spectroscopy, allowed us to provide a compelling explanation of the experimentally observed switching behavior on the basis of the surface reactions and successive charge balance in the bulk.
In this work, we present an investigation on the effects of thermal annealing on the magnetic response of Lithium Niobate/Fe samples. Fe thin films have been deposited on Lithium Niobate Z-cut ferroelectric substrates by vapor phase epitaxy. A series of annealing treatments were performed on the samples, monitoring the evolution of their magnetic properties, both at the surface and on the volume. The combination of structural, magnetic, chemical and morphological characterizations shows that the modification of the chemical properties, i.e. the phase decomposition, of the substrate upon annealing affects drastically the magnetic behavior of the interfacial Fe layer. By tuning the annealing temperature, the magnetic coercive field value can be increased by an order of magnitude compared to the as-grown value, keeping the same in-plane isotropic behavior. Since no evident differences were recorded in the Fe layer from the chemical point of view, we attribute the origin of this effect to an intermixing process between a fragment of the substrate and the Fe thin film upon critical temperature annealing, process that is also is responsible for the observed changes in roughness and morphology of the magnetic thin film.
The electronic properties of hole- and electron-doped manganites were probed by a combination of x-ray absorption and photoemission spectroscopies. Hole-doped La0.7Ba0.3MnO3 and electron-doped La0.7Ce0.3MnO3 thin films were epitaxially grown on SrTiO3 substrates by means of pulsed laser deposition. Ex-situ x-ray diffraction demonstrated the substrate/film epitaxy relation and in-situ low energy electron diffraction provided evidence of high structural order of film surfaces. By combining synchrotron x-ray absorption and x-ray photoemission spectroscopy, evidence of Mn ions into a 2+ state as a result of the Ce substitution in the electron-doped manganites was provided. Angular resolved photo-emission spectroscopy (ARPES) results showed a predominance of z2-orbitals at the surface of both hole- and, unexpectedly, electron-doped manganites thus questioning the validity of the commonly accepted scenario describing the electron filling in manganites’ 3d orbitals in oxide manganites. The precise determination of the electronic and orbital properties of the terminating layers of oxide manganites paves the way for engineering multi-layered heterostructures thus leading to novel opportunities in the field of quantum electronics.
A ferromagnetic (FM) thin film deposited on a substrate of Pb(Mg1/3Nb2/3)O3−PbTiO3 (PMN-PT) is an appealing heterostructure for the electrical control of magnetism, which would enable nonvolatile memories with ultralow-power consumption. Reversible and electrically controlled morphological changes at the surface of PMN-PT suggest that the magnetoelectric effects are more complex than the commonly used “strain-mediated” description. Here we show that changes in substrate morphology intervene in magnetoelectric coupling as a key parameter interplaying with strain. Magnetic-sensitive microscopy techniques are used to study magnetoelectric coupling in Fe/PMN-PT at different length scales, and compare different substrate cuts. The observed rotation of the magnetic anisotropy is connected to the changes in morphology, and mapped in the crack pattern at the mesoscopic scale. Ferroelectric polarization switching induces a magnetic field-free rotation of the magnetic domains at micrometer scale, with a wide distribution of rotation angles. Our results show that the relationship between the rotation of the magnetic easy axis and the rotation of the in-plane component of the electric polarization is not straightforward, as well as the relationship between ferroelectric domains and crack pattern. The understanding and control of this phenomenon is crucial to develop functional devices based on FM/PMN-PT heterostructures.
Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers–Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.
THORONDOR is a data treatment software with a graphical user interface (GUI) accessible via the browser‐based Jupyter notebook framework. It aims to provide an interactive and user‐friendly tool for the analysis of NEXAFS spectra collected during in situ experiments. The program allows on‐the‐fly representation and quick correction of large datasets from single or multiple experiments. In particular, it provides the possibility to align in energy several spectral profiles on the basis of user‐defined references. Various techniques to calculate background subtraction and signal normalization have been made available. In this context, an innovation of this GUI involves the usage of a slider‐based approach that provides the ability to instantly manipulate and visualize processed data for the user. Finally, the program is characterized by an advanced fitting toolbox based on the lmfit package. It offers a large selection of fitting routines as well as different peak distributions and empirical ionization potential step edges, which can be used for the fit of the NEXAFS rising‐edge peaks. Statistical parameters describing the goodness of a fit such as χ2 or the R‐factor together with the parameter uncertainty distributions and the related correlations can be extracted for each chosen model.
The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at high doping level up to x=0.4, thanks to the good lat-tice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at macroscopic and atomic level, respectively. Therefore, in epitaxial thin films the homogeneous doping can be obtained even with high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by x-ray photoemission and x-ray absorption show the O 2p band shift towards the Fermi level which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x=0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of high doping level x=0.4.
This thesis is focused the structural and spectroscopic characterization of multiferroic heterostructures composed of a thin film of iron, which is ferromagnetic, deposited on a bulk PMN-PT ([Pb(Mg1/3Nb2/3)O3]1−x–[PbTiO3]x) substrate, which is ferroelectric. The epitaxially grown interface between two mate-rials displays the magnetoelectric coupling. By applying an electric field across the thickness of the substrate (i.e. along the growth direction) it is possible to polarize and deform the ferroelectric crystal structure, thus manipulating the magnetic properties of the over-layer. In this work, we analyse how the two opposite polarized states of the PMN-PT affect the magnetic anisotropy of the iron overlayer and the role of morphology in this modifications. In particular the morphology represents an important factor in the magnetoelectric mechanisms that has been little investigated before.
The discovery of 2D conductivity at the LaAlO3/SrTiO3 interface has been linking, for over a decade, two of the major current research fields in materials science: correlated transition‐metal‐oxide systems and low‐dimensional systems. Notably, despite the 2D nature of the interfacial electron gas, the samples are 3D objects with thickness in the mm range. This prevented researchers so far from adopting strategies that are only viable for fully 2D materials, or from effectively exploiting degrees of freedom related to strain, strain gradient and curvature. Here a method based on pure strain engineering for obtaining freestanding LaAlO3/SrTiO3 membranes with micrometer lateral dimensions is demonstrated. Detailed transmission electron microscopy investigations show that the membranes are fully epitaxial and that their curvature results in a huge strain gradient, each layer showing a mixed compressive/tensile strain state. Electronic devices are fabricated by realizing ad hoc circuits for individual micro‐membranes transferred on silicon chips. The samples exhibit metallic conductivity and electrostatic field effect like 2D‐electron systems in bulk heterostructures. The results open a new path for adding oxide functionalities into semiconductor electronics, potentially allowing for ultra‐low voltage gating of a superconducting transistors, micromechanical control of the 2D electron gas mediated by ferroelectricity and flexoelectricity, and on‐chip straintronics.
Metal monochalcogenides (MX) have recently been rediscovered as two-dimensional materials with electronic properties highly dependent on the number of layers. Although some intriguing properties appear in the few-layer regime, the carrier mobility of MX compounds increases with the number of layers, motivating the interest in multilayered heterostructures or bulk materials. By means of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we compare the electronic band structure of bulk ε−GaSe and ε-InSe semiconductors. We focus our attention on the top valence band of the two compounds along main symmetry directions, discussing the effect of spin-orbit coupling and contributions from post-transition-metal (Ga or In) and Se atoms. Our results show that the top valence band at Γ point is dominated by Se pz states, while the main effect of Ga or In appears more deeply in binding energy, at the Brillouin zone corners, and in the conduction band. These findings explain also the experimental observation of a hole effective mass rather insensitive to the post-transition metal. Finally, by means of spin-resolved ARPES and surface band structure calculations we describe Rashba-Bychkov spin splitting of surface states in ε−InSe.
We study the 2×2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe2 in the 2D limit.
Two-dimensional (2D) alloys represent a versatile platform that extends the properties of atomically thin transition-metal dichalcogenides. Here, using molecular beam epitaxy, we investigate the growth of 2D vanadium-molybdenum diselenide alloys, VxMo1–xSe2, on highly oriented pyrolytic graphite and unveil their structural, chemical, and electronic integrities via measurements by scanning tunneling microscopy/spectroscopy, synchrotron X-ray photoemission, and X-ray absorption spectroscopy (XAS). Essentially, we found a critical value of x = ∼0.44, below which phase separation occurs and above which a homogeneous metallic phase is favored. Another observation is an effective increase in the density of mirror twin boundaries of constituting MoSe2 in the low V concentration regime (x ≤ 0.05). Density functional theory calculations support our experimental results on the thermal stability of 2D VxMo1–xSe2 alloys and suggest an H phase of the homogeneous alloys with alternating parallel V and Mo strips randomly in-plane stacked. Element-specific XAS of the 2D alloys, which clearly indicates quenched atomic multiplets similar to the case of 2H-VSe2, provides strong evidence for the H phase of the 2D alloys. This work provides a comprehensive understanding of the thermal stability, chemical state, and electronic structure of 2D VxMo1–xSe2 alloys, useful for the future design of 2D electronic devices.
The electronic properties of strontium ruthenate SrRuO3perovskite oxide thin filmsare modified by epitaxial strain, as determined by growing on different substrates by pulsedlaser deposition. Temperature dependence of the transport properties indicates that tensilestrain deformation of the SrRuO3unit cell reduces the metallicity of the material as well as itsmetal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Rubuckling angle due to compressive strain is counterweighted by the increased overlap of theconduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting intoan increased MIT temperature, i.e., a more conducting material. In particular, in the more metallicsamples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of anextra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening,as observed in volume sensitive photoemission of the unstrained material.
Ti silicates, and in particular Titanium Silicalite‐1 (TS‐1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H 2 O 2 as oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unfathomed. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as main active species, has not been quantitatively discussed in the literature. In this work, we assess the structural features of defective Ti sites on the basis of electronic spectroscopies outcomes, as interpreted through quantum‐mechanical simulation. We disclose here strong evidences that the most common defective Ti sites, often reported in the TS‐1 literature, are monomeric Ti centers, embedded in the zeolite framework, having a distorted octahedral local symmetry.
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at the Sn M4,5-edges tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides, and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2-x layer at the surface of SnO2 is readily reoxidised to SnO2 by treating the sample with O2 at mild temperatures (> 200 °C), revealing the nature of “electron sponge” of tin oxide. The experiments, combined with DFT calculations, allowed devising a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds, and the formation of methoxy- and/or methyl-tin species at the surface.
Bulk PtSn4 has recently attracted the interest of the scientific community for the presence of electronic states exhibiting Dirac node arcs, enabling possible applications in nanoelectronics. Here, by means of surface-science experiments and density functional theory, we assess its suitability for catalysis by studying the chemical reactivity of the (0 1 0)-oriented PtSn4 surface toward CO, H2O, O2 molecules at room temperature and, moreover, its stability in air. We demonstrate that the catalytic activity of PtSn4 is determined by the composition of the outermost atomic layer. Specifically, we find that the surface termination for PtSn4 crystals cleaved in vacuum is an atomic Sn layer, which is totally free from any CO poisoning. In oxygen-rich environment, as well as in ambient atmosphere, the surface termination is a SnOx skin including SnO and SnO2 in comparable amount. However, valence-band states, including those forming Dirac node arcs, are only slightly affected by surface modifications. The astonishingly beneficial influence of surface oxidation on catalytic activity has been demonstrated by electrocatalytic tests evidencing a reduction of the Tafel slope, from 442 down to 86 mV dec−1, whose origin has been explained by our theoretical model. The use of surface-science tools to tune the chemical reactivity of PtSn4 opens the way toward its effective use in catalysis, especially for hydrogen evolution reaction and oxygen evolution reaction.
The local atomic structure and the magnetic response of Co films intercalated between Graphene and Ir(111) were investigated combining polarized X-ray Absorption Spectroscopy at the Co K edge with Magneto-Optic Kerr Effect. The structural and magnetic evolution upon a 500 °C annealing was evaluated as a function of the film thickness. After the thermal treatment, our thick film (10 monolayers) presented a lower perpendicular magnetic anisotropy (PMA) as well as a reduced average structural disorder. On the other hand, in our thin film (5 monolayers), the annealing enhanced the perpendicular magnetic response and induced a local anisotropy by stretching the Co-Co bonds in the film plane and compressing those outside the plane. Our finding emphasizes the close relationship between the local structure of Co within the film and its magnetic properties.
We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
The mechanisms of CO oxidation on the Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide were studied by means of operando soft X-ray absorption spectroscopy. We found that Cu is the active metal, and that Cu(II) can be rapidly reduced to Cu(I) by CO when the temperature is larger than 130 °C. Co and Ni do not have any role in this respect. The Cu(II) oxidation state can be easily but slowly recovered by treating the sample in O2 at ca. 250 °C. However, it should be noted that CuO is readily and irreversibly reduced to Cu(I) if treated in CO at T>100 °C. Thus, the main conclusion of this work is that the high configurational entropy of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O stabilizes the rock-salt structure and permits the oxidation/reduction of Cu to be reversible, thus permitting the catalytic cycle to take place.
The electronic properties of anatase titanium dioxide (TiO2) thin films epitaxially grown on LaAlO3 substrates are investigated by synchrotron-x-ray spectroscopy [x-ray absorption spectroscopy (XAS), x-ray photoemission spectroscopy (XPS), and angle-resolved photoemission spectroscopy (ARPES)] and infrared spectroscopy. The Ti3+ fraction in TiO2−x is varied either by changing the oxygen pressure during deposition or by postgrowth annealing in ultrahigh vacuum (UHV). Structural investigation of the TiO2 thin films provides evidence of highly uniform crystallographic order in both as-grown and in situ UHV-annealed samples. The increased amount of Ti3+ as a consequence of UHV annealing is calibrated by in situ XPS and XAS analysis. The as-grown TiO2 samples, with a low Ti3+ concentration, show distinct electronic properties with respect to the annealed films, namely, absorption in the midinfrared (MIR) region correlated with polaron formation, and another peak in the visible range at 1.6 eV correlated with the presence of localized defect states (DSs). With the increasing level of Ti3+ induced by the postannealing process, the MIR peak disappears, while the DS peak is redshifted to the near-infrared region at about 1.0 eV. These results indicate the possibility of tailoring the optical absorption of anatase TiO2 films from the visible to the near-infrared region.
Chiral crystal YbNi3Ga9 is known as an intermediate valence compound in which a strong hybridization between the 4f orbitals and the conduction band is present. The Co-substitution to YbNi3Ga9 works as a hole doping that reduces the Kondo temperature and enhances the effective mass of itinerant charge carriers. Using angle-resolved photoelectron spectroscopy, the complex band structure of Yb(Ni1−xCox)3Ga9 (x=0,0.1) is revealed. A Yb2+ 4f7/2 band and evidences of hybridization to valence bands are found near the Fermi level. Both YbNi3Ga9 and the Co-substituted compound exhibit double hexagonal Fermi surfaces centered at the Γ¯-point, surrounded by a large snowflake-like surface, and a triangular electron-like surface along the Γ¯M¯ direction. By changing the incident photon energy, the band dispersion along the c-axis and the barrel-shaped Fermi surface is observed.
Two-dimensional (2D) metallic states induced by oxygen vacancies (VOs) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of VO-induced states at the (001) surface of anatase TiO2, where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular O2: while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface VOs and remain localized at the surface, where they can promptly react with O2. In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with O2 is kinetically hindered on anatase TiO2 (001), thus making them much less sensitive to oxygen dosing.
We present the results of a photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES) study on high quality, epitaxial SrNbO3 thin films prepared in situ by pulsed laser deposition (PLD). We show that the Fermi surface is composed of three bands mainly due to t(2g) orbitals of Nb 4d, in analogy with the 3d-based perovskite systems. The bulk band dispersion for the conduction and valence states obtained by density functional theory (DFT) is generally consistent with the ARPES data. The small discrepancy in the bandwidth close to the Fermi level seems to result from the interplay of correlation effects and the presence of vacancies. The ARPES results are complemented by soft x-ray photoemission spectroscopy measurements in order to provide indications on the chemical states and the stoichiometry of the material.
Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV. This result has been obtained by seeding the HHG process with 230 fs pulses at 515 nm. The ultimate energy resolution achieved on a polycrystalline Au sample at 40 K is ∼22 meV at 16.9 eV. These parameters set a new benchmark for narrowband HHG sources and have been obtained by varying the repetition rate up to 200 kHz and, consequently, mitigating the space charge, operating with ≈3×107 electrons/s and ≈5×108 photons/s. By comparing the harmonics bandwidth and the ultimate energy resolution with a pulse duration of ∼105 fs (as retrieved from time-resolved experiments on bismuth selenide), we demonstrate a new route for ultrafast space-charge-free PES experiments on solids close to transform-limit conditions.
Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling.
The present thesis work has been performed within a new-born laboratory called Spin Polar-ization Research Instrument in the Nanoscale and Time domain (SPRINT laboratory), as apart of the research infrastructures circuit NFFA-Trieste (Nano Foundries and Fine Analysis -belonging to the wider NFFA-Europe circuit) and hosted in the experimental hall of the freeelectron laser FERMI@Elettra.The SPRINT laboratory rises as an answer to the urgent request of the scientific communityof extension of photoemission spectroscopies (PES), not only energy-, but possibly also angle-and spin-resolved, to the time domain in the sub-picosecond regime. The integration of a PESapparatus within a setup for stroboscopic measurements (that is in a pump-probe scheme) pavesthe way to time resolved study of the relaxation of optically populated electronic states, thusenabling the study the ultrafast dynamics of the excitations inside the materials, with greatbenefit from both the fundamental and the technological point of view.
Combinations of nontrivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances, material candidates are emerging. Yet, so far a compound that combines a band-inverted electronic structure with an intrinsic net magnetization remains unrealized. MnBi2Te4 has been established as the first antiferromagnetic topological insulator and constitutes the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. Here, for n=1, we confirm a nonstoichiometric composition proximate to MnBi4Te7. We establish an antiferromagnetic state below 13 K followed by a state with a net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topologically nontrivial surface state on the MnBi4Te7(0001) surface, analogous to the nonmagnetic parent compound Bi2Te3. Our results establish MnBi4Te7 as the first band-inverted compound with intrinsic net magnetization providing a versatile platform for the realization of magnetic topological states of matter.
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
Implementation of in-situ and operando experimental set-ups for bridging the pressure gap in characterization techniques based on monitoring of photoelectron emission has made significant achievements at several beamlines at Elettra synchrotron facility. These set-ups are now operational and have been successfully used to address unsolved issues exploring events occurring at solid–gas, solid–liquid and solid-solid interfaces of functional materials. The sections in the article communicate the research opportunities offered by the current set-ups at APE, BACH, ESCAmicroscopy and Nanospectroscopy beamlines and outline the next steps to overcome the present limits.
We predict NiTe2 to be a type-II Dirac semimetal based on ab initio calculations and explore its bulk and spin-polarized surface states using spin- and angle-resolved photoemission spectroscopy (spin-ARPES). Our results show that, unlike PtTe2, PtSe2, and PdTe2, the Dirac node in NiTe2 is located in close vicinity to the Fermi energy. Additionally, NiTe2 also hosts a pair of band inversions below the Fermi level along the Γ−A high-symmetry direction, with one of them leading to a Dirac cone in the surface states. The bulk Dirac nodes and the ladder of band inversions in NiTe2 support unique topological surface states with chiral spin texture over a wide range of energies. Our work paves the way for the exploitation of the low-energy type-II Dirac fermions in NiTe2 in the fields of spintronics, infrared plasmonics, and ultrafast optoelectronics.
Palladium ditelluride (PdTe2) is a novel transition‐metal dichalcogenide exhibiting type‐II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface‐science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter‐wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ≈+12 kJ mol−1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub‐nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2‐based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2‐based millimeter‐wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2‐based high‐temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
The layered van der Waals antiferromagnet MnBi2Te4 has been predicted to combine the band ordering of archetypical topological insulators such as Bi2Te3 with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi2Te4(0001) single crystals by use of spin- and angle-resolved photoelectron spectroscopy experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.
The redox process of pretreated Co3O4 thin film coatings has been studied by ambient pressure soft X-ray absorption spectroscopy. The Co3O4 coatings were composed of nanoparticles of about 10 nm in size as prepared by pulsed laser deposition. The thin film coatings were pretreated in He or in H2 up to 150 °C prior to exposure to the reactive gases. The reactivity toward carbon monoxide and oxygen was monitored by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy during gas exposures. The results indicate that the samples pretreated in He show reactivity only at high temperature, while the samples pretreated in H2 are reactive also at room temperature. X-ray photoemission spectroscopy measurements in ultra-high vacuum and NEXAFS simulations with the CTM4XAS code further specify the results.
Electronic correlation is believed to play an important role in exotic phenomena such as insulator-metal transition, colossal magnetoresistance, and high-temperature superconductivity in correlated electron systems. Recently, it has been shown that electronic correlation may also be responsible for the formation of unconventional plasmons. Herewith, using a combination of angle-dependent spectroscopic ellipsometry, angle resolved photoemission spectroscopy, and Hall measurements, all as a function of temperature supported by first-principles calculations, the existence of low-loss high-energy correlated plasmons accompanied by spectral weight transfer, a fingerprint of electronic correlation, in topological insulator (Bi0.8Sb0.2)2Se3 is revealed. Upon cooling, the density of free charge carriers in the surface states decreases whereas that in the bulk states increases, and the recently reported correlated plasmons are key to explaining this phenomenon. Our result shows the importance of electronic correlation in determining correlated plasmons and opens an alternative path in engineering plasmonic-based topologically insulating devices.
Magnetism in monolayer (ML) VSe2 has attracted broad interest in spintronics, while existing reports have not reached consensus. Using element-specific X-ray magnetic circular dichroism, a magnetic transition in ML VSe2 has been demonstrated at the contamination-free interface between Co and VSe2. Through interfacial hybridization with a Co atomic overlayer, a magnetic moment of about 0.4 μB per V atom in ML VSe2 is revealed, approaching values predicted by previous theoretical calculations. Promotion of the ferromagnetism in ML VSe2 is accompanied by its antiferromagnetic coupling to Co and a reduction in the spin moment of Co. In comparison to the absence of this interface-induced ferromagnetism at the Fe/ML MoSe2 interface, these findings at the Co/ML VSe2 interface provide clear proof that the ML VSe2, initially with magnetic disorder, is on the verge of magnetic transition.
Combining first‐principles calculations with synchrotron‐based X‐ray photoelectron spectroscopy, the surface chemical reactivity of VSe2 single crystals toward oxygen, water, and air is assessed. It is found that the pristine, undefected surface is inert toward oxygen and water adsorption. The presence of Se defects drastically changes the surface reactivity. Specifically, water adsorption at room temperature is dissociative and mainly localized at Se vacancies. In contrast, surface oxidation is achieved only after long‐term air exposure (1 month). These results are crucial to assess the surface stability in ambient environment in the prospect of VSe2‐based applications.
The modifications of chemical and magnetic properties of hybrid ferromagnetic/organic interfaces composed of Co (Ni) as the top layer and iron phthalocyanine, FePc, as a thin film (deposited on Cu surfaces) are studied by means of X-ray photoemission and absorption spectroscopies. The bond formation between Co (Ni) and carbon and nitrogen atoms is indicated by the presence of additional features in C 1s and N 1s core level spectra. The interaction between Co (Ni) atoms and Fe within FePc induces an overall redistribution of 3d orbital population, as shown by the decrease of the ratio with respect to one of the noninteracting FePc films. X-ray magnetic circular dichroism (XMCD) reveals in-plane magnetization of the Co (Ni) film on top of FePc, which appears at room temperature and in remanence for Co and Ni film thicknesses of 0.4 and 4 nm, respectively. In the case of the Co/FePc interface, we studied the magnetic response in the presence of a field of 6 T and in remanence observing the Fe XMCD intensity and line shape. The differences in XMCD spectra are related to the co-existence of two contributions to the chemical and magnetic interactions according to the distance between the molecules and the metal interface. The closest to the metal top layer chemically bind and align with its magnetization, whereas the farthest have no preferential bonding and magnetic alignment, except in the presence of a large external magnetic field. These findings are relevant to the understanding and the development of hybrid organic/inorganic spin devices.
A proper understanding on the charge mobility in organic materials is one of the key factors to realize highly functionalized organic semiconductor devices. So far, however, although a number of studies have proposed the carrier transport mechanism of rubrene single crystal to be band-like, there are disagreements between the results reported in these papers. Here, we show that the actual dispersion widths of the electronic bands formed by the highest occupied molecular orbital are much smaller than those reported in the literature, and that the disagreements originate from the diffraction effect of photoelectron and the vibrations of molecules. The present result indicates that the electronic bands would not be the main channel for hole mobility in case of rubrene single crystal and the necessity to consider a more complex picture like molecular vibrations mediated carrier transport. These findings open an avenue for a thorough insight on how to realize organic semiconductor devices with high carrier mobility.
Whenever one is interested in making high temperature superconductor-based devices, the goodness of the sample surface in terms of structural and electrical properties is a strong issue. In fact, it is well known that the surface of high Tc superconducting samples is not bulk-representative, due to air contamination and to the possible presence of oxygen vacancies. In addition, the quality of the surface layer results to be crucial in surface sensitive measurements as in X-ray photoelectron and Angle-resolved photoemission spectroscopy. Recently, some studies have been dedicated to the realization of devices based on electron-doped cuprates, bilayers and nanowires, showing the actual possibility to realize good quality junctions by using these cuprates. In this work, we report on the fabrication of thin films of the electron-doped Nd2−xCexCuO4±δ compound and analyze the surface natural barrier of as-grown films by means of point contact spectroscopy measurements. Suitable treatments of samples in an ozone rich atmosphere have been developed in order to improve the surface quality of the films. Auger electron spectroscopy has been used to monitor the effectiveness of these treatments.
Monolayer VSe2, featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition‐metal dichalcogenides (2D‐TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X‐ray and angle‐resolved photoemission, and X‐ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T‐phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular‐beam epitaxy. Element‐specific X‐ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long‐range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic‐scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D‐TMDs in the search for exotic low‐dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.
We report on the reproducible surface topological electron states in Bi2Se3 topological insulator thin films when epitaxially grown by Pulsed Laser Deposition (PLD) on (0 0 1)-oriented SrTiO3 (STO) perovskite substrates. Bi2Se3 has been reproducibly grown with single (0 0 1)-orientation and low surface roughness as controlled by ex-situ X-ray diffraction and in situ scanning tunnel microscopy and low-energy electron diffraction. Finally, in situ synchrotron radiation angle-resolved photo-emission spectroscopy measurements show a single Dirac cone and Dirac point at eV located in the center of the Brillouin zone likewise found from exfoliated single-crystals. These results demonstrate that the topological surface electron properties of PLD-grown Bi2Se3 thin films grown on (0 0 1)-oriented STO substrates open new perspectives for applications of multi-layered materials based on oxide perovskites.
Converse magnetoelectric coupling in artificial multiferroics is generally modeled through three possible mechanisms: charge transfer, strain mediated effects or ion migration. Here the role played by electrically controlled morphological modifications on the ferromagnetic response of a multiferroic heterostructure, specifically FexMn1−x ferromagnetic films on piezoferroelectric PMN‐PT [001] substrates, is discussed. The substrates present, in correspondence to electrical switching, fully reversible morphological changes at the surface, to which correspond reproducible modifications of the ferromagnetic response of the FexMn1−x films. Topographic analysis by atomic force microscopy shows the formation of surface cracks (up to 100 nm in height) upon application of a sufficiently high positive electric field (up to 6 kV cm−1). The cracks disappear after application of negative electric field of the same magnitude. Correspondingly, in operando X‐ray magnetic circular dichroic spectroscopy at Fe edge in FexMn1−x layers and micro‐MOKE measurements show local variations in the intensity of the dichroic signal and in the magnetic anisotropy as a function of the electrically driven morphological state. This morphologic parameter, rarely explored in literature, directly affects the ferromagnetic response of the system. Its proof of electrically reversible modification of the magnetic response adds a new possibility in the design of electrically controlled magnetic devices.
Cu2ZnSnS4 (CZTS) nanocrystals (NCs) were produced via hot-injection from metal chloride precursors. A systematic investigation of the influence of synthesis conditions on composition, size and microstructure of CZTS NCs is presented. The results show that the solvent amount (oleylamine) is a key parameter in the synthesis of this quaternary chalcogenide: a low solvent content leads to CZTS NCs with a prominent kesterite phase with the desired composition for use as absorber material in thin film photovoltaic cells. It is also observed that lowering the injection temperature (250 °C) favours formation of CZTS NCs in the wurtzite phase. The effect of different high temperature thermal treatments on the grain growth is also shown: large crystals are obtained with annealing in inert atmosphere, whereas nanocrystalline films are obtained introducing sulphur vapour during the heat treatment. A correlation between the grain dimension and the carbonaceous residues in the final films is investigated. It is shown that the grain growth is hindered by organic residues, amount and nature of which depend on the heat treatment atmosphere. In fact, oleylamine is removed by a complex pyrolytic process, which is affected by the presence of sulphur vapour. The latter favours the stability of oleylamine residuals against its non-oxidative release.
Currently, there is a flurry of research interest on materials with an unconventional electronic structure, and we have already seen significant progress in their understanding and engineering towards real-life applications. The interest erupted with the discovery of graphene and topological insulators in the previous decade. The electrons in graphene simulate massless Dirac Fermions with a linearly dispersing Dirac cone in their band structure, while in topological insulators, the electronic bands wind non-trivially in momentum space giving rise to gapless surface states and bulk bandgap. Weyl semimetals in condensed matter systems are the latest addition to this growing family of topological materials. Weyl Fermions are known in the context of high energy physics since almost the beginning of quantum mechanics. They apparently violate charge conservation rules, displaying the 'chiral anomaly', with such remarkable properties recently theoretically predicted and experimentally verified to exist as low energy quasiparticle states in certain condensed matter systems. Not only are these new materials extremely important for our fundamental understanding of quantum phenomena, but also they exhibit completely different transport phenomena. For example, massless Fermions are susceptible to scattering from non-magnetic impurities. Dirac semimetals exhibit non-saturating extremely large magnetoresistance as a consequence of their robust electronic bands being protected by time reversal symmetry. These open up whole new possibilities for materials engineering and applications including quantum computing. In this review, we recapitulate some of the outstanding properties of WTe2, namely, its non-saturating titanic magnetoresistance due to perfect electron and hole carrier balance up to a very high magnetic field observed for the very first time. It also indicative of hosting Lorentz violating type-II Weyl Fermions in its bandstructure, again first predicted candidate material to host such a remarkable phase. We primarily focus on the findings of our ARPES, spin-ARPES, and time-resolved ARPES studies complemented by first-principles calculations.
The band inversions that generate the topologically non-trivial band gaps of topological insulators and the isolated Dirac touching points of three-dimensional Dirac semimetals generally arise from the crossings of electronic states derived from different orbital manifolds. Recently, the concept of single orbital-manifold band inversions occurring along high-symmetry lines has been demonstrated, stabilising multiple bulk and surface Dirac fermions. Here, we discuss the underlying ingredients necessary to achieve such phases, and discuss their existence within the family of transition metal dichalcogenides. We show how their three-dimensional band structures naturally produce only small k z projected band gaps, and demonstrate how these play a significant role in shaping the surface electronic structure of these materials. We demonstrate, through spin- and angle-resolved photoemission and density functional theory calculations, how the surface electronic structures of the group-X TMDs PtSe2 and PdTe2 are host to up to five distinct surface states, each with complex band dispersions and spin textures. Finally, we discuss how the origin of several recently-realised instances of topological phenomena in systems outside of the TMDs, including the iron-based superconductors, can be understood as a consequence of the same underlying mechanism driving k z -mediated band inversions in the TMDs.
Metal-phthalocyanines are quasi-planar heterocyclic macrocycle molecules with a highly conjugated structure. They can be engineered at the molecular scale (central atom, ligand) to tailor new properties for organic spintronics devices. In this study, we evaluated the magnetic behavior of FePc in a ∼1 nm molecular film sandwiched between two ferromagnetic films: cobalt (bottom) and nickel (top). In the single interface, FePc in contact with a Co film is magnetically coupled with the inorganic film magnetization, though the relatively small Fe(Pc) X-ray magnetic circular dichroism (XMCD) signal in remanence, with respect to that observed in applied field of 6 T, suggests that a fraction of molecules in the organometallic film have their magnetic moment not aligned or antiparallel with respect to Co. When in contact with two interfaces, Fe(Pc) XMCD doubles, indicating that part of the Fe(Pc) are now aligned with the Ni topmost layer, saturated at 1 T. We discussed the relevance of the finding in terms of understanding and developing hybrid organic/inorganic spin devices.
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface.
By performing density functional theory and Green's functions calculations, complemented by x-ray photoemission spectroscopy, we investigate the electronic structure of Fe/GeTe(111), a prototypical ferromagnetic/Rashba-ferroelectric interface. We reveal that such a system exhibits several intriguing properties resulting from the complex interplay of exchange interaction, electric polarization, and spin-orbit coupling. Despite a rather strong interfacial hybridization between Fe and GeTe bands, resulting in a complete suppression of the surface states of the latter, the bulk Rashba bands are hardly altered by the ferromagnetic overlayer. This could have a deep impact on spin-dependent phenomena observed at this interface, such as spin-to-charge interconversion, which are likely to involve bulk rather than surface Rashba states.
This thesis contains a selection of the results on the shallow electron states of quantum materials that I obtained as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano. I carried out my doctoral research activity mostly at the TASC-IOM CNR laboratory, in the framework of the NFFA and APE-beamline facilities (Elettra Sincrotrone Trieste), as well in dedicated sessions at the I2; beamline of the Diamond light source, Harwell Campus, UK. To access the electronic properties of materials I specialised myself in photoemission spectroscopy techniques. High quality samples are a prerequisite for any attempt to study quantum materials so that a major effort in my PhD project has been to master the growth of novel quantum materials by means of Pulsed Laser Deposition (PLD). Given that the PLD is integrated in the suite of UHV facilities attached in-situ to the APE beamline, I directly characterised the electronic properties of the PLD grown samples exploiting both the spectroscopic techniques available at the beamline (ARPES, X-ray photoemission and absorption spectroscopies: XPS and XAS), either ex-situ structural characterisation tools (X-ray diffraction –XRD– and X-ray reflectivity, XRR).
I explored the properties of systems that were fabricated aiming to exploit enhanced multiferroic behavior and potentially useful functionalities at room temperature. The systems of choice for this thesis were two prototypical multiferroic heterostructures composed by a ferromagnetic thin film deposited on a ferroelectric substrate: LSMO/BTO(001) and Fe,FeMn/PMN-PT(001). I focused on the magnetic response of the thin films to applied electric fields oriented perpendicular to the interface, and influencing the substrate. In both the chosen heterostructures the magnetic layers and ferroelectric substrates are all materials with high ordering temperature.
Titanium dioxide (TiO2) is mainly present in nature in three different polymorphs: rutile, brookite and anatase. In particular, the latter is largely studied due to its promising future applications in several devices like memristors and solar cells, as well as implementations in spintronics and transparent conductive oxides. In this framework, the most important physical quantity is certainly conductivity: it is thus fundamental to analyze and control the electronic properties of anatase with a particular attention to the surface, which plays a remarkable role in the previous applications.
Rutile TiO2 is thermodinamically favoured at the common ambient pressure and temperature, while anatase is favoured instead at the nanometric scale: for these reasons, thin films Pulsed Laser Deposition (PLD) enables a controlled and functionalized growth of anatase, thanks to the extreme versatility and accuracy of this technique.
This work was carried out at the NFFA (Nano Foundries and Fine Analysis) - APE (Advanced Photoelectric Effect) beamline, part of the CNR - IOM group, which exploits the synchrotron radiation emitted by the third generation storage ring Elettra. In particular, APE beamline is a state-of-the-art surface science laboratory, which includes a thin film pulsed laser deposition chamber connected through a multi-component ultra-high vacuum (UHV) system to two distinct endstations, where the electronic properties of the samples are analyzed with low energy (8 120 eV ) and high energy (150 1600 eV ) x-rays. It is thus possible to deposit thin films of the desired material and subsequently perform measurements with synchrotron light without exposing the sample to air, preventing an irreversible contamination of the surface.
Le proprietà ottiche, elettroniche e magnetiche dei solidi e delle loro superfici dipendono dalla struttura degli stati elettronici entro alcuni eV dal livello di Fermi. I calcoli della struttura elettronica a bande sono efficaci solo nel caso di materiali a bassa interazione elettrone-elettrone (correlazione). L'esperimento e la guida necessaria per lo studio delle proprietà elettroniche dei solidi e delle loro superfici, ed in particolare la spettroscopia di fotoemissione (photoemission spectroscopy - PES) che si basa sulla misura dello spettro energetico degli elettroni emessi da un solido eccitato da un fascio di fotoni monocromatici di energia eccedente la funzione lavoro. La risoluzione dell'angolo di emissione (Angle-resolved photemission spectroscopy - ARPES) permette di avere informazioni sulla legge di dispersione En(k) dello stato elettronico iniziale, mentre la misura del grado di polarizzazione in spin del fascio di elettroni completa il set di numeri quantici, fornendo un dato molto importante per lo studio delle correlazioni elettroniche.
La misura della polarizzazione in spin di un fascio di elettroni fotoemessi da una superficie ferromagnetica permette di studiare in modo diretto la struttura elettronica determinata dall’interazione di scambio e quindi il momento magnetico di spin del sistema, caratterizzandone il comportamento magnetico. Da una parte lo sviluppo del campo della spintronica, dall’altra la richiesta sempre crescente di strumenti e dispositivi di immagazzinamento e trattamento dati ad alte prestazioni, marcano la necessità di esplorare le configurazioni degli stati elettronici e le loro eccitazioni.
By means of angle‐resolved photoemission spectroscopy measurements, the electronic band structure of the three‐dimensional PbBi4Te7 and PbBi6Te10 topological insulators is compared. The measurements clearly reveal coexisting topological and multiple Rashba‐like split states close to the Fermi level for both systems. The observed topological states derive from different surface terminations, as confirmed by scanning tunneling microscopy measurements, and are well‐described by the density functional theory simulations. Both the topological and the Rashba‐like states reveal a prevalent two‐dimensional character barely affected by air exposure. X‐ray and valence band photoemission measurements suggest Rashba‐like states stem from the van der Waals gap expansion, consistently with density functional theory calculations.
Topological insulators (TIs) with an inverted bulk band and a strong spin-orbit coupling exhibit gapless topological surface states (TSSs) protected by time-reversal symmetry. Helical spin textures driven by spin-momentum locking offer the opportunity to generate spin-polarized currents and therefore TIs are expected to be used for future spintronic applications. For practical applications TIs are urgently required that are operable at room temperature due to a wide bulk band gap as well as a distinct topological surface state that is robust to atmospheric exposure. Here we show two distinguishable TSSs originating from different terminations on PbBi4Te4S3 by using spin- and angle-resolved photoemission spectroscopy. We find that one TSS is persistently observed, while the other becomes invisible upon intentional oxygen exposure. The result signifies the presence of a protected TSS buried under the topmost surface. Our finding paves the way for realizing a topological spintronics device under atmospheric conditions.
We report on the influence of spin-orbit coupling (SOC) in Fe-based superconductors via application of circularly polarized spin and angle-resolved photoemission spectroscopy. We combine this technique in representative members of both the Fe-pnictides (LiFeAs) and Fe-chalcogenides (FeSe) with tight-binding calculations to establish an ubiquitous modification of the electronic structure in these materials imbued by SOC. At low energy, the influence of SOC is found to be concentrated on the hole pockets, where the largest superconducting gaps are typically found. This effect varies substantively with the
kzdispersion, and in FeSe we find SOC to be comparable to the energy scale of orbital order. These results contest descriptions of superconductivity in these materials in terms of pure spin-singlet eigenstates, raising questions regarding the possible pairing mechanisms and role of SOC therein.
The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate,
IrO2, is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of IrO2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.
We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.
In order to enable the use of the prototypical 2D‐layered MoS2 for spintronics, its integration with ferromagnetic layers is mandatory. By employing interface‐sensitive 57Fe conversion electron Mössbauer spectroscopy (CEMS), hard X‐ray photoelectron spectroscopy (HAXPES), and transmission electron microscopy (TEM), the chemical, structural, and magnetic properties of the Fe/2D‐MoS2 interface are investigated. CEMS shows that out of the first 1 nm of Fe in direct contact with 2D‐MoS2, about half of the Fe atoms keeps the un‐perturbed Fe local environment, partly in regions where the original 2D‐layered structure of MoS2 is preserved as shown by TEM. The remaining reacting Fe atoms exclusively bond with Mo, with the majority of them being characterized by a ferromagnetic environment and the rest coordinating in a paramagnetic Fe‐Mo configuration. The preferential Fe bonding with Mo is corroborated by HAXPES analysis. The results provide detailed insight into the link between the bonding configuration and the interfacial magnetism at the Fe/2D‐MoS2 heterojunction.
We present a study on the growth and characterization of high-quality single-layer MoS2 with a single orientation, i.e. without the presence of mirror domains. This single orientation of the MoS2 layer is established by means of x-ray photoelectron diffraction. The high quality is evidenced by combining scanning tunneling microscopy with x-ray photoelectron spectroscopy measurements. Spin- and angle-resolved photoemission experiments performed on the sample revealed complete spin-polarization of the valence band states near the K and -K points of the Brillouin zone. These findings open up the possibility to exploit the spin and valley degrees of freedom for encoding and processing information in devices that are based on epitaxially grown materials.
The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy’s proof-of-concept compares experiments using 4,4′′-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.
The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor
PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.
Controlling magnetism by using electric fields is a goal of research towards novel spintronic devices and future nanoelectronics. For this reason, multiferroic heterostructures attract much interest. Here we provide experimental evidence, and supporting density functional theory analysis, of a transition in La0.65Sr0.35MnO3 thin film to a stable ferromagnetic phase, that is induced by the structural and strain properties of the ferroelectric BaTiO3 (BTO) substrate, which can be modified by applying external electric fields. X-ray magnetic circular dichroism measurements on Mn L edges with a synchrotron radiation show, in fact, two magnetic transitions as a function of temperature that correspond to structural changes of the BTO substrate. We also show that ferromagnetism, absent in the pristine condition at room temperature, can be established by electrically switching the BTO ferroelectric domains in the out-of-plane direction. The present results confirm that electrically induced strain can be exploited to control magnetism in multiferroic oxide heterostructures.
The superconducting properties of Sr1–xLaxCuO2 thin films are strongly affected by sample preparation procedures, including the annealing step, which are not always well controlled. We have studied the evolution of Cu L2,3 and O K edge x-ray absorption spectra (XAS) of Sr1–xLaxCuO2 thin films as a function of reducing annealing, both qualitatively and quantitatively. By using linearly polarized radiation, we are able to identify the signatures of the presence of apical oxygen in the as-grown sample and its gradual removal as a function of duration of 350 °C Ar annealing performed on the same sample. Even though the as-grown sample appears to be hole doped, we cannot identify the signature of the Zhang-Rice singlet in the O K XAS, and it is extremely unlikely that the interstitial excess oxygen can give rise to a superconducting or even a metallic ground state. XAS and x-ray linear dichroism analyses are, therefore, shown to be valuable tools to improving the control over the annealing process of electron doped superconductors.
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/
BaTiO3 heterostructures grown on SrTiO3 (100) substrates. Chromium thin films (1–2 nm thickness) are deposited by molecular beam epitaxy on the
BaTiO3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTiO3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with Cr2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-Cr2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
We investigate the solvatochromic effect of a Fe-based spin-crossover (SCO) compound via ambient pressure soft X-ray absorption spectroscopy (AP-XAS) and atomic force microscopy (AFM). AP-XAS provides the direct evidence of the spin configuration for the Fe(II) 3d states of the SCO material upon in situ exposure to specific gas or vapor mixtures; concurrent changes in nanoscale topography and mechanical characteristics are revealed via AFM imaging and AFM-based force spectroscopy, respectively. We find that exposing the SCO material to gaseous helium promotes an effective decrease of the transition temperature of its surface layers, while the exposure to methanol vapor causes opposite surfacial and bulk solvatochromic effects. Surfacial solvatochromism is accompanied by a dramatic reduction of the surface layers stiffness. We propose a rationalization of the observed effects based on interfacial dehydration and solvation phenomena.
PtTe2 is a novel transition-metal dichalcogenide hosting type-II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium-oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2-based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis.
Carbon nanomaterials exhibit extraordinary mechanical and electronic properties desirable for future technologies. Beyond the popular sp2‐scaffolds, there is growing interest in their graphdiyne‐related counterparts incorporating both sp2 and sp bonding in a regular scheme. Herein, we introduce carbonitrile‐functionalized graphdiyne nanowires, as a novel conjugated, one‐dimensional (1D) carbon nanomaterial systematically combining the virtues of covalent coupling and supramolecular concepts that are fabricated by on‐surface synthesis. Specifically, a terphenylene backbone is extended with reactive terminal alkyne and polar carbonitrile (CN) moieties providing the required functionalities. It is demonstrated that the CN functionalization enables highly selective alkyne homocoupling forming polymer strands and gives rise to mutual lateral attraction entailing room‐temperature stable double‐stranded assemblies. By exploiting the templating effect of the vicinal Ag(455) surface, 40 nm long semiconducting nanowires are obtained and the first experimental assessment of their electronic band structure is achieved by angle‐resolved photoemission spectroscopy indicating an effective mass below 0.1m0 for the top of the highest occupied band. Via molecular manipulation it is showcased that the novel oligomer exhibits extreme mechanical flexibility and opens unexplored ways of information encoding in clearly distinguishable CN‐phenyl trans–cis species. Thus, conformational data storage with density of 0.36 bit nm−2 and temperature stability beyond 150 K comes in reach.
The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
The spin-spin correlations in hollow (H) and full (F) maghemite nanoparticles (NPs) have been studied by X-ray magnetic circular dichroism (XMCD). An unexpected XMCD signal was detected and analyzed under the application of a small field (μ0H = 160 Oe) and at remanence for both F and H NPs. Clear differences in the magnitude and in the lineshape of the XMCD spectra between F and H NPs emerged. By comparing XMCD measurements performed with a variable degree of surface sensitivity, we were able to address the specific role played by the surface spins in the magnetism of the NPs.
The main goal of this dissertation is the study of the effects induced by quantum confinement in transition-metal oxides quantum wells (QWs). The field of possible applications of oxide-based heterostructures (oxide-based nanoelectronics, spintronics, quantum computation, excitonic devices, energy conversion in solar cells, etc.) is very ample and growing, thanks to the many fascinating and exotic properties of transition-metal oxides and their versatility as well. p-type SrMnO3/La0.7Sr0.3MnO3/SrMnO3QWs and n-type SrCuO2/Sr0.9La0.1CuO2/SrCuO2QWs have been studied. The first part of my work has been devoted to the investigation of quantum confinement achievement using a Mott insulator with a small band gap. The observed results suggest that this type of material can be successfully used in QWs.As a final result of my work, the achievement of dimensional effects induced by the layering on the normal state of both investigated systems (n and p-doped) has been assessed. In addition, the layering has been shown to influence the superconducting state of the investigated n-doped QWs and on the metal-to-insulator transition of the p-doped QWs. The investigation of the behavior of each layer constituent the QW (both nand p-doped) is relevant in view of future growth of proximate p-ndoped systems. Part of my work, therefore, has been devoted to the study of the properties of (Sr,La)CuO2thin films. The study of electrical transport properties of SLCO thin films as a function of the doping has allowed to relate the presence of the low temperature upturn in the (Sr,La)CuO2resistivity versus temperature curves the quantum interference effects produced by weak localization effects. Furthermore, the presence of low temperature Fermi liquid behaviors in SLCO thin films has also been observed.The last part of my work has dealt with the effects of the in-situannealing step on the final superconductivity properties of the (Sr,La)CuO2films, helping to optimize the growth step, crucial for the quality of this thin film and, consequently, of the n-doped QWs based on this compound. The effect of annealing, i.e. of the O content, has been studied, by using X-ray Absorption Spectroscopy (XAS) measurements performed at the Elettra Synchrotron in Trieste, Italy, and has allowed to reveal clear signature of apical Oxygen removal.
MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the insertion of a two-dimensional magnetic oxide layer at the interface with the aim of both increasing the reproducibility of the interface preparation and offering a way for a further fine control over the electronic and magnetic properties. We have inserted a two-dimensional Cr4O5 layer at the C60/Fe(001) interface and have characterized the corresponding morphological, electronic, and magnetic properties. Scanning tunneling microscopy and electron diffraction show that the film grows well-ordered both in the monolayer and multilayer regimes. Electron spectroscopies confirm that hybridization of the electronic states occurs at the interface. Finally, magnetic dichroism in X-ray absorption shows an unprecedented spin-polarization of the hybridized fullerene states. The latter result is discussed also in light of an ab initio theoretical analysis.
Extremely large magnetoresistance (XMR), observed in transition-metal dichalcogenides,
WTe2, has attracted recently a great deal of research interest as it shows no sign of saturation up to a magnetic field as high as 60 T, in addition to the presence of type-II Weyl fermions. Currently, there is a great deal of discussion on the role of band structure changes in the temperature-dependent XMR in this compound. In this contribution, we study the band structure of WTe2 using angle-resolved photoemission spectroscopy and first-principles calculations to demonstrate that the temperature-dependent band structure has no substantial effect on the temperature-dependent XMR, as our measurements do not show band structure changes upon increasing the sample temperature between 20 and 130 K. We further observe an electronlike surface state, dispersing in such a way that it connects the top of bulk holelike band to the bottom of bulk electronlike band. Interestingly, similarly to bulk states, the surface state is also mostly intact with the sample temperature. Our results provide valuable information in shaping the mechanism of temperature-dependent XMR in WTe2.
The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films. Satellite peaks in O1s and modifications at the O K-edge allow the determination of the presence of H embedded in ZnO and the very low concentration of Zn vacancies and O interstitials in undoped ZnO. Contributions coming from substitutional and (above the solubility limit) interstitial Al atoms have been clearly identified and have been related to changes in the oxide stoichiometry and increased oxygen coordination, together with small lattice distortions. In this way defects and doping in oxide films can be controlled, in order to tune their properties and improve their performances.
In this work, we studied the influence of the buffer layer composition on the IrMn thickness threshold for the onset of exchange bias in IrMn/Co bilayers. By means of magnetometry, x-ray absorption and x-ray photoelectron spectroscopy, we investigated the magnetic and chemical properties of the stacks. We demonstrated a higher diffusion of Mn through the Co layer in the case of a Cu buffer layer. This is consistent with the observation of larger IrMn thickness threshold for the onset of exchange bias.
In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1−xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1−xSrxMnO3, for fully restoring bulk properties.
By combining bulk sensitive soft-x-ray angular-resolved photoemission spectroscopy and first-principles calculations we explored the bulk electron states of WTe2, a candidate type-II Weyl semimetal featuring a large nonsaturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we directly observe a three-dimensional electronic dispersion. We report a band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the Γ point, differently from previous more surface sensitive angle-resolved photoemission spectroscopy experiments that additionally found a pronounced quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe2 around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
Complete photoemission experiments, enabling measurement of the full quantum set of the photoelectron final state, are in high demand for studying materials and nanostructures whose properties are determined by strong electron and spin correlations. Here the implementation of the new spin polarimeter VESPA (Very Efficient Spin Polarization Analysis) at the APE-NFFA beamline at Elettra is reported, which is based on the exchange coupling between the photoelectron spin and a ferromagnetic surface in a reflectometry setup. The system was designed to be integrated with a dedicated Scienta-Omicron DA30 electron energy analyzer allowing for two simultaneous reflectometry measurements, along perpendicular axes, that, after magnetization switching of the two targets, allow the three-dimensional vectorial reconstruction of the spin polarization to be performed while operating the DA30 in high-resolution mode. VESPA represents the very first installation for spin-resolved ARPES (SPARPES) at the Elettra synchrotron in Trieste, and is being heavily exploited by SPARPES users since autumn 2015.
We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.
Transition-metal dichalcogenides (WTe2 and MoTe2) have recently drawn much attention, because of the
nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the
predictions of likely type-II Weyl semimetals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe2 and MoTe2 the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe2, while it is yet to be clear in the case of MoTe2 which has an identical crystal structure of WTe2 at low temperatures. In this Rapid Communication, we report low-energy electronic structure and Fermi surface topology of MoTe2 using angle-resolved photoemission spectrometry (ARPES) technique and first-principles calculations, and compare them with that of WTe2 to understand the mechanism of XMR. Our measurements demonstrate that MoTe2 is an uncompensated semimetal, contrary to WTe2 in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe2. In this context, we also discuss the applicability of other existing conjectures on the XMR of these compounds.
We report on epitaxial growth of Bi2Se3topological insulator thin films by Pulsed Laser Deposition(PLD). X-ray diffraction investigation confirms that Bi2Se3with a single (001)-orientation can beobtained on several substrates in a narrow (i.e., 20°C) range of deposition temperatures and at highdeposition pressure (i.e., 0.1 mbar). However, only films grown on (001)-Al2O3substrates show analmost-unique in-plane orientation.In-situspin-resolved angular resolved photoemission spectros-copy experiments, performed at the NFFA-APE facility of IOM-CNR and Elettra (Trieste), show asingle Dirac cone with the Dirac point atEB0:38 eV located in the center of the Brillouin zoneand the spin polarization of the topological surface states. These results demonstrate that the topolog-ical surface state can be obtained in PLD-grown Bi2Se3thin films.
The role of trivalent rare-earth dopants on the cerium oxidation state has been systematically studied by in situ photoemission spectroscopy with synchrotron radiation for 10 mol % rare-earth doped epitaxial ceria films. It was found that dopant rare-earths with smaller ionic radius foster the formation of Ce3+ by releasing the stress strength induced by the cation substitution. With a decrease of the dopant ionic radius from La3+ to Yb3+, the out-of-plane axis parameter of the crystal lattice decreases without introducing macroscopic defects. The high crystal quality of our films allowed us to comparatively study both the ionic conductivity and surface reactivity ruling out the influence of structural defects. The measured increase in the activation energy of films and their enhanced surface reactivity can be explained in terms of the dopant ionic radius effects on the Ce4+ → Ce3+ reduction as a result of lattice relaxation. Such findings open new perspectives in designing ceria-based materials with tailored properties by choosing suitable cation substitution.
The prediction of Weyl fermions in the low-temperature noncentrosymmetric
1T′ phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the
1T′ phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.
Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
In this work the experimental uncertainties concerning electron spin polarization (SP) under various realistic measurement conditions are theoretically derived. The accuracy of the evaluation of the SP of the photoelectron current is analysed as a function of the detector parameters and specifications, as well as of the characteristics of the photoexcitation sources. In particular, the different behaviour of single counter or twin counter detectors when the intensity fluctuations of the source are considered have been addressed, leading to a new definition of the SP detector performance. The widely used parameter called the figure of merit is shown to be inadequate for describing the efficiency of SP polarimeters, especially when they are operated with time-structured excitation sources such as free-electron lasers. Numerical simulations have been performed and yield strong implications in the choice of the detecting instruments in spin-polarization experiments, that are constrained in a limited measurement time. Our results are therefore applied to the characteristics of a wide set of state-of-the-art spectroscopy facilities all over the world, and an efficiency diagram for SP experiments is derived. These results also define new mathematical instruments for handling the correct statistics of SP measurements in the presence of source intensity fluctuations.
This thesis completes my work as doctoral student of the Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata at the Università degli Studi di Milano that has been carried out, starting in November 4236, mostly at the Laboratorio TASC of IOM-CNR3 in the premises of the Elettra - Sincrotrone Trieste and FERMI@Elettra infrastructures4, in the framework of the NFFA and APE-beamline facilites5, as well as by accessing international large scale infrastructures and laboratories. The activity has addressed the development of experimental methodologies and novel instrumentation oriented to the study of the dynamical properties of highly correlated materials after high energy excitation. The science programme has been carried out by exploiting ultrafast femtosecond probes from the optical regime (Ti-Sa lasers, fibre laser oscillators) to the extreme UV-soft X rays at FERMI, to the picosecond hard X-rays from the SPring-: and Diamond synchrotron radiation source. The sample synthesis of correlated oxides and its characterization has been performed within the NFFA facility and APE-group collaboration in Trieste as well as the design and construction of the all new laser High Harmonic Generation beam line NFFA-SPRINT and its end station for time resolved vectorial electron spin polarimetry.
PtBi2 with a layered hexagonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high-resolution angle-resolved photoemission spectroscopy, we present a systematic study on its bulk and surface electronic structure. Through careful comparison with first principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real composition of samples. We find significant electron doping in PtBi2, implying a substantial Bi-deficiency-induced disorder therein. Intriguingly, we discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude linear band dispersion in the quantum limit as the cause of the unconventional large linear magnetoresistance but give support to the classical disorder model from the perspective of the electronic structure.
The complex electronic properties of
ZrTe5 have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of
ZrTe5, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of ZrTe5.
The electronic structure of the chiral helimagnet
Cr1/3NbS2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS2 layers but also cause significant modifications of the electronic structure of the host NbS2 material. In particular, the data provide evidence that a description of the electronic structure of Cr1/3NbS2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. The relevance of these results to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.
Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the “bulk” ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange “surface” reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.
Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal–organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.
ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization. The sample environment in the polarimeter allows for cryogenic cooling and in-operando application of electric and magnetic fields. The photoelectrons are collected by an electrostatic accelerator and transport lens that form a periaxial beam that is subsequently directed by a Y-shaped electrostatic deflector to either one of the two orthogonal Mott polarimeters. The apparatus has been designed to operate in the extreme conditions of ultraintense single-X-ray pulses as originated by free electron lasers (up to 1 kHz), but it allows also for the single electron counting mode suitable when using statistical sources such as synchrotron radiation, cw-laser, or e-gun beams (up to 150 kcps).
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique.
We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.
We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO3 (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.
Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be switched between paramagnetic high-spin and diamagnetic low-spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.
Research on spintronics and on multiferroics leads now to the possibility of combining the properties of these materials in order to develop new functional devices. Here we report the integration of a layer of magnetostrictive material into a magnetic tunnel junction. A FeGa/MgO/Fe heterostructure has been grown on a GaAs(001) substrate by molecular beam epitaxy (MBE) and studied by X-ray magnetic circular dichroism (XMCD). The comparison between magneto optical Kerr effect (MOKE) measurements and hysteresis performed in total electron yield allowed distinguishing the ferromagnetic hysteresis loop of the FeGa top layer from that of the Fe buried layer, evidencing a different switching field of the two layers. This observation indicates an absence of magnetic coupling between the two ferromagnetic layers despite the thickness of the MgO barrier of only 2.5 nm. The in-plane magnetic anisotropy has also been investigated. Overall results show the good quality of the heterostructure and the general feasibility of such a device using magnetostrictive materials in magnetic tunnel junction.
This thesis reports on the construction and commissioning tests of the novel experimental set-up needed for a long term research project, named ULTRASPIN, aiming at establishing time resolved spin-resolved photoemission measurements with ultra-short (10−14 s) photon pulses from Free Electron Laser beamlines or from table-top UV/Soft-X beamlines.
The ULTRASPIN project started in the summer 2013, building on competences and instrumentation in part available from the APE-beamline group of IOM-CNR at Elettra, and with the partial support of an European contract (EXSTASY-EXperimental STation for the Analysis of the Spin Dynamics, Grant agreement N.PIIF-GA-2012-326641) and related fellowship of a world-expert of Mott scattering.
I have been involved from the beginning in the final design, in the construction and commissioning of a novel stray-field free UHV apparatus for preparing and hosting atomically clean surfaces and for measuring the spin-polarization of the photo-emitted electrons with “single pulse” sensitivity down to the 10−14 s time scale, as well as in the standard high frequency spectroscopy mode. In the commissioning phase I have participated to test experiments on ULTRASPIN as well as to relevant experiments conducted in other apparatuses.