

SPRINT for 50-200 fs / >200 kHz time resolved spectroscopy

*Advanced Photoelectric-effect Experiments – APE in Italian is also "bee" as well as the most versatile utility vehicle ever!

Publications

Days allocated to users

Total publications: 172

www.trieste.nffa.eu

Total days: 834

Involved institutions

rieste

European Spin-OFF

research infrastructure

Ongoing

for optimal

Elettra 2.0

discussion at CNR

investments on

NRRP Italian Spin-OFF

Real Inffa-di

Piano Nazionale di Ripresa e Resilienza

4 partners – 9 nodes Polimi: nanofab AREA: TEM, hydrogen Unimi: surf. Magnetism CNR: nanofabs, ultrafast **Optics**, **TEM**

MP 3 : Digital Structur_e DIALS TAIN

6 : Virtual & Remote

WP 6 PR managemen Technology Transfer

industrial

Bridging academic & ir

N.

JAG FAIR data

JA4 Nanosafety

JA5 Nano

23 partners + 12 TP

186 methods 650 instruments

SR, Neutrons, EM

≥ 10

/Suo 101

10²

10¹

2012 2017 2018 2019 2020 2021 2022

since 2016: 93 papers on international journals, 29 with IF >9, 7 theses (Master, PhD)

SCIENCE at APE-LE

www.trieste.nffa.eu Info.ts@nffa.eu

Spin Texture of Topological Matter

trieste

nffa.

Electronic states in anomalous metals, low dimensional materials (graphene, topological insulators, transition metal dichalcogenides), highly correlated metallic oxides and 2D electron gases confined on surfaces/interfaces

Magnetic ordering and coupling in diluted magnetic systems, magnetic topological insulators; interfaces with ferromagnets; electronic/ magnetic properties of complex oxides and "out of equilibrium" systems

Fundamental aspects of photoemission spectroscopy, matrix element effects, dichroism

C O O O OFFICINA DEI MATERIALI

Growth morphology, electron states and magnetism of **hybrid organic/inorganic interfaces**, charge transfer at the interfaces, doping effects on the molecular layer

Genuine Mott transition undressed of any symmetry breaking effects in thin films of V_2O_3

Spin polarized surface states in NiTe₂ exploited in high-frequency rectifiers

Binding energy (eV) Binding energy (eV)

Interplay between **magnetism and topological properties** in the axion insulator candidate EuSn₂P₂

Image: Stripping for the stripping of the s

SLS

Hisor

Elettra

Spin ARPES (Mott Cophee; SIS)

ARPES (Spectromicroscopy)

Spin ARPES (VLEED Espresso; BL9)

50 X 100 µm²

<1 µm (Schwarzschild; 27 & 74 eV)

~ 1 mm

 \sim

0.5

1.0

0

10

x (µm)

0.0

 $k_{v}(Å^{-1})$

-1.0 -0.5

since 2016: 91 papers, 26 with IF >9, 6 theses (Master, PhD)

Surface and Interface Magnetism / Multiferroism

C O I I ISTITUTO OFFICINA DEI MATERIALI

rieste

In-operando Ambient Pressure Spectroscopy

SCIENCE at APE-HE

ENHANCED PERFORMANCE: APE-EHE

Single domain XMCD/PES on Ferromagnets/multiferroics Magnetic dichroism in PES (LMDAD)

SR-facility	beamline	XAS/XMCD	in operando AP-XAS
Diamond	i10	XMCD, XMLD, 0.5-420 K, 14 T	
	B07 -		AP XAS for gas and liquid cells (300-450
	versox	XAS, XPS, 120-1250 K	K), AP-XPS up to 30 mbar, 250-750 K
		XMCD, XMLD, 2-350 K, 7 T, prep	
SLS	Xtreme	chamber	
		XMCD, XMLD, 0.2-370 (1000) K,	
Soleil	Deimos	7 (30) T, in situ	liquid cell for ferrofluids in FY
		XMCD (10 mT), XMLD, XPS, prep	
		chamber, 50-1200 K, time	
	Tempo	resolved	
		XMCD, XMLD, 3-325 K, 9 T, prep	
ESRF	ID32	chamber	
		XMCD, XMLD, 3-350 K, 6 T, prep	
Alba	Boreas	chamber	
		XMCD, XMLD, 0.3-500 K, 9 T,	
Bessy	Vekmag	time resolved	
ALS	4.0.2	XMCD, XMLD, 15-750 K, 4 T	
	932	200-900 eV XAS	200-900 eV, ambient pressure XPS

H-cell setup: in situ X-ray and IR spectroscopy

nffa.

RATIONALE:	1) electron mean free path varies from 0.5 to over 5 nm
	energy range favourable for PES/ARPES with depth sensitivity

- extending ARPES and core level photoemission spectroscopy from surface to bulk or buried layers allowing to probe **electron states**, graded compositions, multilayered devices
- access to 3rd and 4th period core edges (resonant photoemission and XAS/XMCD)
- in-operando setups

ISTITUTO OFFICINA DEI

2) Elettra 2.0 can host a **dedicated short insertion with performances well adapted** for bridging the soft-X to hard-X ranges (as IO9 of Diamond, but with a unique – short – undulator)

NANOSCOPIL 5,000 20, CRISTAL 000	Synchrotron	HAXPES	Energy range	
SAMBA	Soleil	HAXPES + RIXS (GALAXIES)	2.3-12 Kev	
ROXIMA (1 & 5,000 15,0	PETRA III	HAXPES (P22)	2.4-15 keV	
SWING 5,000 17,0	Diamond	HAXPES (109) 2 x > 2m undulators	0.1-20 keV	
5,000 20,0	Pessy	HAXPES (HIKE)	2.5 –12 keV	•
	Dessy	Ambient pressure HAXPES (Belchem-DCM, under cons	otr) 2.5-10 keV	
0.2 nm	SLS	Ambient pressure HAXPES endstation	N/A	

Benchmark IO9 vs. APE-TX

500 eV ~4x10^12 photon/s (slit 20um) 1000 eV ~ 3x10^12 photon/s (slit 10um)

2.5 keV ~1x10¹³ photon/s (Si(111) DCM) 2.5 keV ~ 3x10¹² photon/s (Si(111) DCM) 6 keV ~ 1.5x10¹² photon/s (Si(111) DCM) Example: critical thickness of 'metallic' bulk screening attenuation of bulk hybridization, localization of surface electrons.

rieste

C I I I ISTITUTO OFFICINA DEI MATERIALI

T. Pincelli et al. Nat. Comm. 8, 16051 (2017) IO9 – Diamond + BL19LXU Spring 8

www.trieste.nffa.eu Info.ts@nffa.eu

ARPES from Soft-X toTender-X

nature materials

rieste

ARTICLES

PUBLISHED ONLINE: 14 OCTOBER 2012 | DOI: 10.1038/NMAT3/

Bulk electronic structure of the dilute magnetic semiconductor $Ga_{1-x}Mn_xAs$ through hard X-ray angle-resolved photoemission

C O O O STITUTO OFFICINA DEI MATERIALI

A. X. Gray^{1,2,3}*, J. Minár⁴, S. Ueda⁵, P. R. Stone^{2,6}, Y. Yamashita⁵, J. Fujii⁷, J. Braun⁴, L. Plucinski⁸, C. M. Schneider⁸, G. Panaccione⁷, H. Ebert⁴, O. D. Dubon^{2,6}, K. Kobayashi⁵ and C. S. Fadley^{1,2}

ARPES with 3.4 keV measured @ Spring-8

RESET

LRS

HRS

rieste

C O O O STITUTO OFFICINA DEI MATERIALI

A. Regoutz et al. Adv. Funct. Mater. 26, 507 (2016); C. Baumer et al. Faraday Discuss., (2019), 213;)

CONCEPT OF APE-Tender-X beamline

www.trieste.nffa.eu Info.ts@nffa.eu

Concept and construction by Bruno Diviacco

Preliminary concept under development by CNR and Elettra + international collaboration (IO9-like)

NFFA Prototype for AP-HAXPES experiment (collab. with 109) The sample volume is separated from the UHV by 2 SiN membranes (summer 2023).

• FIGURES OF MERIT OF THE APE-HIVE UPGRADES:

- APE-ELE : exploit beam brilliance for microfocussing, expand hv-range
- APE-EHE : exploit beam brilliance for for microfocussing and optimized 1st Harmonic source
- APE-TX : exploit Elettra 2.0 lattice (short section) and undulator technology to realize a continuous photon energy range for photoelectric effect measurements with variable (0.5 – 5 nm) depth sensitivity
- FAIR-by-design metadata acquisition -> towards ARWs in NFFA
- ONGOING DISCUSSION (2023) at CNR level for optimizing overall institutional investments on Elettra 2.0

Nanoscience research @ Elettra 2.0

nffa. trieste

C OFFICINA DEI MATERIALI

DigiMAT - Probing and controlling the electronic properties of materials by taking advantage of thin films technology

In-house	NFFA-TS		NFFA-Europe			
Bi ₂ Se ₃	* RE-doped SrTiO₃	* LaAlO₃	* V ₂ O ₃			
TiO ₂	* SrNbO₃	* Fe(Te _{0.5} Se _{0.5})	$*Fe-doped TiO_2$			
SrRuO ₃	* FeTe	* LaNiO₃	*TM-doped SrTiO $_3$			
La _{0.7} Ba _{0.3} MnO ₃	* Fe	* CaMnO₃	* BaTiO₃			
La _{0.7} Ce _{0.3} MnO ₃	* WO ₃	* Fe ₃ O ₄	RE-doped CeO ₂			
BiFeO₃	* LaVO₃	* MgGa ₂ O ₄	* RE-doped MgO			
WO ₃	* MoS ₂	* MgCr ₂ O ₄	* FeSe			
FeSe	* CeO ₂	* ZnO	* YSZ-8%			
V ₂ O ₃	* YBa2Cu3O7	* Bi ₂ WO ₆				
Cr ₄ Te ₅	$La_{0.7}Sr_{0.3}MnO_3$	* WO ₃				
	*MnSe2	* YIG - Y ₃ Fe ₅ O ₁₂				
*growth protocol developed "on-demand"						

36 different materials / 30 user-driven / 28 growth protocols developed

UV-ARPES experiments run on these materials

Dual pulsed laser deposition system for the growth of complex materials and heterostructures

Cite as: Rev. Sci. Instrum. 94, 033903 (2023); https://doi.org/10.1063/5.0138889 Submitted: 15 December 2022 • Accepted: 12 February 2023 • Published Online: 06 March 2023

PLD – I (operational) UHV suitcase UHV transfer tube PLD – II (2021 NdYAG KrF laser DigiMAT